Citation: | Hao T,Cao T,Ji P,et al.Research advances on the role of Schwann cells in diabetic peripheral neuropathy[J].Chin J Burns Wounds,2023,39(12):1190-1194.DOI: 10.3760/cma.j.cn501225-20230727-00019. |
[1] |
曹涛,计鹏,张智,等.抗生素骨水泥治疗糖尿病足溃疡的前瞻性随机对照研究[J].中华烧伤与创面修复杂志,2023,39(4):311-318.DOI: 10.3760/cma.j.cn501225-20221111-00485.
|
[2] |
McDermottK,FangM,BoultonAJM,et al.Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers[J].Diabetes Care,2023,46(1):209-221.DOI: 10.2337/dci22-0043.
|
[3] |
SenCK,RoyS,KhannaS.Diabetic peripheral neuropathy associated with foot ulcer: one of a kind[J/OL].Antioxid Redox Signal,2023(2023-01-25)[2023-07-27]. https://pubmed.ncbi.nlm.nih.gov/35850520/.DOI:10.1089/ars.2022.0093.[published online ahead of print].
|
[4] |
ArmstrongDG,TanTW,BoultonA,et al.Diabetic foot ulcers: a review[J].JAMA,2023,330(1):62-75.DOI: 10.1001/jama.2023.10578.
|
[5] |
SelvarajahD,KarD,KhuntiK,et al.Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention[J].Lancet Diabetes Endocrinol,2019,7(12):938-948.DOI: 10.1016/S2213-8587(19)30081-6.
|
[6] |
HicksCW,SelvinE.Epidemiology of peripheral neuropathy and lower extremity disease in diabetes[J].Curr Diab Rep,2019,19(10):86.DOI: 10.1007/s11892-019-1212-8.
|
[7] |
FeldmanEL,CallaghanBC,Pop-BusuiR,et al.Diabetic neuropathy[J].Nat Rev Dis Primers,2019,5(1):41.DOI: 10.1038/s41572-019-0092-1.
|
[8] |
MizukamiH,OsonoiS.Pathogenesis and molecular treatment strategies of diabetic neuropathy collateral glucose-utilizing pathways in diabetic polyneuropathy[J].Int J Mol Sci,2020,22(1):94.DOI: 10.3390/ijms22010094.
|
[9] |
CalcuttNA.Diabetic neuropathy and neuropathic pain: a (con)fusion of pathogenic mechanisms?[J].Pain,2020,161(Suppl 1):S65-86.DOI: 10.1097/j.pain.0000000000001922.
|
[10] |
TangHY,JiangAJ,MaJL,et al.Understanding the signaling pathways related to the mechanism and treatment of diabetic peripheral neuropathy[J].Endocrinology,2019,160(9):2119-2127.DOI: 10.1210/en.2019-00311.
|
[11] |
MinQ,ParkinsonDB,DunXP.Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge[J].Glia,2021,69(2):235-254.DOI: 10.1002/glia.23892.
|
[12] |
TaveggiaC,FeltriML.Beyond wrapping: canonical and noncanonical functions of Schwann cells[J].Annu Rev Neurosci,2022,45:561-580.DOI: 10.1146/annurev-neuro-110920-030610.
|
[13] |
MonjeM.Myelin plasticity and nervous system function[J].Annu Rev Neurosci,2018,41:61-76.DOI: 10.1146/annurev-neuro-080317-061853.
|
[14] |
ReedCB,FrickLR,WeaverA,et al.Deletion of calcineurin in Schwann cells does not affect developmental myelination, but reduces autophagy and delays myelin clearance after peripheral nerve injury[J].J Neurosci,2020,40(32):6165-6176.DOI: 10.1523/JNEUROSCI.0951-20.2020.
|
[15] |
EscobarA,CarvalhoMR,MaiaFR,et al.Glial cell line-derived neurotrophic factor-loaded CMCht/PAMAM dendrimer nanoparticles for peripheral nerve repair[J].Pharmaceutics,2022,14(11):2408.DOI: 10.3390/pharmaceutics14112408.
|
[16] |
KangWB,ChenYJ,LuDY,et al.Folic acid contributes to peripheral nerve injury repair by promoting Schwann cell proliferation, migration, and secretion of nerve growth factor[J].Neural Regen Res,2019,14(1):132-139.DOI: 10.4103/1673-5374.243718.
|
[17] |
ContrerasE,BolívarS,NavarroX,et al.New insights into peripheral nerve regeneration: the role of secretomes[J].Exp Neurol,2022,354:114069.DOI: 10.1016/j.expneurol.2022.114069.
|
[18] |
JhaMK,LeeY,RussellKA,et al.Monocarboxylate transporter 1 in Schwann cells contributes to maintenance of sensory nerve myelination during aging[J].Glia,2020,68(1):161-177.DOI: 10.1002/glia.23710.
|
[19] |
JhaMK,MorrisonBM.Lactate transporters mediate glia-neuron metabolic crosstalk in homeostasis and disease[J].Front Cell Neurosci,2020,14:589582.DOI: 10.3389/fncel.2020.589582.
|
[20] |
BabettoE,WongKM,BeirowskiB.A glycolytic shift in Schwann cells supports injured axons[J].Nat Neurosci,2020,23(10):1215-1228.DOI: 10.1038/s41593-020-0689-4.
|
[21] |
YuanQ,ZhangX,WeiW,et al.Lycorine improves peripheral nerve function by promoting Schwann cell autophagy via AMPK pathway activation and MMP9 downregulation in diabetic peripheral neuropathy[J].Pharmacol Res,2022,175:105985.DOI: 10.1016/j.phrs.2021.105985.
|
[22] |
LiuYP,ShaoSJ,GuoHD.Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy[J].Life Sci,2020,248:117459.DOI: 10.1016/j.lfs.2020.117459.
|
[23] |
DuW,WangN,LiF,et al.STAT3 phosphorylation mediates high glucose-impaired cell autophagy in an HDAC1-dependent and -independent manner in Schwann cells of diabetic peripheral neuropathy[J].FASEB J,2019,33(7):8008-8021.DOI: 10.1096/fj.201900127R.
|
[24] |
EidSA,El MassryM,HichorM,et al.Targeting the NADPH oxidase-4 and liver X receptor pathway preserves Schwann cell integrity in diabetic mice[J].Diabetes,2020,69(3):448-464.DOI: 10.2337/db19-0517.
|
[25] |
FanB,LiC,SzaladA,et al.Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes[J].Diabetologia,2020,63(2):431-443.DOI: 10.1007/s00125-019-05043-0.
|
[26] |
ZhangQ,SongW,ZhaoB,et al.Quercetin attenuates diabetic peripheral neuropathy by correcting mitochondrial abnormality via activation of AMPK/PGC-1α pathway in vivo and in vitro[J].Front Neurosci,2021,15:636172.DOI: 10.3389/fnins.2021.636172.
|
[27] |
GongX,GuiZ,YeX,et al.Jatrorrhizine ameliorates Schwann cell myelination via inhibiting HDAC3 ability to recruit Atxn2l for regulating the NRG1-ErbB2-PI3K-AKT pathway in diabetic peripheral neuropathy mice[J].Phytother Res,2023,37(2):645-657.DOI: 10.1002/ptr.7641.
|
[28] |
SunQ,TangDD,YinEG,et al.Diagnostic significance of serum levels of nerve growth factor and brain derived neurotrophic factor in diabetic peripheral neuropathy[J].Med Sci Monit,2018,24:5943-5950.DOI: 10.12659/MSM.909449.
|
[29] |
LiK,ShiX,LuoM,et al.Taurine protects against myelin damage of sciatic nerve in diabetic peripheral neuropathy rats by controlling apoptosis of Schwann cells via NGF/Akt/GSK3β pathway[J].Exp Cell Res,2019,383(2):111557.DOI: 10.1016/j.yexcr.2019.111557.
|
[30] |
AnJ,ZhangX,JiaK,et al.Trichostatin A increases BDNF protein expression by improving XBP-1s/ATF6/GRP78 axis in Schwann cells of diabetic peripheral neuropathy[J].Biomed Pharmacother,2021,133:111062.DOI: 10.1016/j.biopha.2020.111062.
|
[31] |
XiC,ZhangY,YanM,et al.Exogenous neuritin treatment improves survivability and functions of Schwann cells with improved outgrowth of neurons in rat diabetic neuropathy[J].J Cell Mol Med,2020,24(17):10166-10176.DOI: 10.1111/jcmm.15627.
|
[32] |
ElafrosMA,AndersenH,BennettDL,et al.Towards prevention of diabetic peripheral neuropathy: clinical presentation, pathogenesis, and new treatments[J].Lancet Neurol,2022,21(10):922-936.DOI: 10.1016/S1474-4422(22)00188-0.
|
[33] |
ChandrasekaranK,AnjaneyuluM,ChoiJ,et al.Role of mitochondria in diabetic peripheral neuropathy: influencing the NAD+-dependent SIRT1-PGC-1α-TFAM pathway[J].Int Rev Neurobiol,2019,145:177-209.DOI: 10.1016/bs.irn.2019.04.002.
|
[34] |
JhaMK,AmentXH,YangF,et al.Reducing monocarboxylate transporter MCT1 worsens experimental diabetic peripheral neuropathy[J].Exp Neurol,2020,333:113415.DOI: 10.1016/j.expneurol.2020.113415.
|
[35] |
BouçanovaF,ChrastR.Metabolic interaction between Schwann cells and axons under physiological and disease conditions[J].Front Cell Neurosci,2020,14:148.DOI: 10.3389/fncel.2020.00148.
|
[36] |
HackettAR,StricklandA,MilbrandtJ.Disrupting insulin signaling in Schwann cells impairs myelination and induces a sensory neuropathy[J].Glia,2020,68(5):963-978.DOI: 10.1002/glia.23755.
|
[37] |
JiaoY,LiYZ,ZhangYH,et al.Lysine demethylase KDM5B down-regulates SIRT3-mediated mitochondrial glucose and lipid metabolism in diabetic neuropathy[J].Diabet Med,2023,40(1):e14964.DOI: 10.1111/dme.14964.
|
[38] |
BelgradJ,De PaceR,FieldsRD.Autophagy in myelinating glia[J].J Neurosci,2020,40(2):256-266.DOI: 10.1523/JNEUROSCI.1066-19.2019.
|
[39] |
YinY,QuH,YangQ,et al.Astragaloside IV alleviates Schwann cell injury in diabetic peripheral neuropathy by regulating microRNA-155-mediated autophagy[J].Phytomedicine,2021,92:153749.DOI: 10.1016/j.phymed.2021.153749.
|