Volume 40 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Dong ZQ,Chen YF,Liang J,et al.Research advances of collagen-based biomaterials in wound repair[J].Chin J Burns Wounds,2024,40(1):90-95.DOI: 10.3760/cma.j.cn501225-20231026-00136.
Citation: Dong ZQ,Chen YF,Liang J,et al.Research advances of collagen-based biomaterials in wound repair[J].Chin J Burns Wounds,2024,40(1):90-95.DOI: 10.3760/cma.j.cn501225-20231026-00136.

Research advances of collagen-based biomaterials in wound repair

doi: 10.3760/cma.j.cn501225-20231026-00136
Funds:

National Key Research and Development Program of China 2022YFC2401800

General Program of National Natural Science Foundation of China 51973136

Sichuan Science and Technology Plan Program 2023NSFSC0996

More Information
  • Corresponding author: Fan Yujiang, Email: fan_yujiang@scu.edu.cn
  • Received Date: 2023-10-26
    Available Online: 2024-01-23
  • Acute or chronic wounds are common clinical problems. Collagen, with advantages including rich sources, impeccable biocompatibility, and inherent biodegradability, has been widely used in fundamental research and clinical treatment of wound repair with broad prospects of clinical applications. This article provided a brief overview of the role of collagen in various biological processes related to wound healing and also outlined the sources of collagen. Furthermore, the article summarized the application and recent research advancements of collagen-based wound dressings in the field of wound repair.

     

  • loading
  • [1]
    GaoY, SunW, ZhangY, et al. All-aqueous microfluidics fabrication of multifunctional bioactive microcapsules promotes wound healing [J]. ACS Appl Mater Interfaces, 2022, 14(43):48426-48437. DOI: 10.1021/acsami.2c13420.
    [2]
    AdamiakK, SionkowskaA. Current methods of collagen cross-linking: review[J]. Int J Biol Macromol, 2020, 161:550-560. DOI: 10.1016/j.ijbiomac.2020.06.075.
    [3]
    刘小刚,陈蕾,李海航,等. 天然与重组胶原蛋白在创面修复中的应用研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(10):978-982. DOI: 10.3760/cma.j.cn501120-20211123-00394.
    [4]
    WangY, ZhangY, LiT, et al. Adipose mesenchymal stem cell derived exosomes promote keratinocytes and fibroblasts embedded in collagen/platelet-rich plasma scaffold and accelerate wound healing[J]. Adv Mater, 2023, 35(40):e2303642. DOI: 10.1002/adma.202303642.
    [5]
    Davison-KotlerE, MarshallWS, García-GaretaE. Sources of collagen for biomaterials in skin wound healing[J]. Bioengineering (Basel), 2019, 6(3):56. DOI: 10.3390/bioengineering6030056.
    [6]
    SolomonovI, ZehoraiE, Talmi-FrankD, et al. Distinct biological events generated by ECM proteolysis by two homologous collagenases[J]. Proc Natl Acad Sci U S A, 2016, 113(39):10884-10889. DOI: 10.1073/pnas.1519676113.
    [7]
    YinH, LiuN, ZhouX, et al. The advance of CCN3 in fibrosis[J]. J Cell Commun Signal, 2023,17(4):1219-1227. DOI: 10.1007/s12079-023-00778-3.
    [8]
    PiperigkouZ, GötteM, TheocharisAD, et al. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing[J]. Adv Drug Deliv Rev, 2018,129:16-36. DOI: 10.1016/j.addr.2017.10.008.
    [9]
    MakuszewskaM, BondaT, CieślińskaM, et al. Expression of collagen type Ⅲ in healing tympanic membrane[J]. Int J Pediatr Otorhinolaryngol, 2020,136:110196. DOI: 10.1016/j.ijporl.2020.110196.
    [10]
    WangC, BrissonBK, TerajimaM, et al. Type Ⅲ collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus[J]. Matrix Biol, 2020,85-86:47-67. DOI: 10.1016/j.matbio.2019.10.001.
    [11]
    BacciS. Fine regulation during wound healing by mast cells, a physiological role not yet clarified[J]. Int J Mol Sci, 2022, 23(3):1820. DOI: 10.3390/ijms23031820.
    [12]
    ShookB, XiaoE, KumamotoY, et al. CD301b+ macrophages are essential for effective skin wound healing[J]. J Invest Dermatol, 2016, 136(9):1885-1891. DOI: 10.1016/j.jid.2016.05.107.
    [13]
    RodriguesM, KosaricN, BonhamCA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019,99(1):665-706. DOI: 10.1152/physrev.00067.2017.
    [14]
    WilkinsonHN, HardmanMJ. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10(9):200223. DOI: 10.1098/rsob.200223.
    [15]
    Mathew-SteinerSS, RoyS, SenCK. Collagen in wound healing[J]. Bioengineering (Basel), 2021,8(5):63.DOI: 10.3390/bioengineering8050063.
    [16]
    LiR, LiuK, HuangX, et al. Bioactive materials promote wound healing through modulation of cell behaviors[J]. Adv Sci (Weinh), 2022,9(10):e2105152. DOI: 10.1002/advs.202105152.
    [17]
    KislingA, LustRM, KatwaLC. What is the role of peptide fragments of collagen Ⅰ and Ⅳ in health and disease?[J]. Life Sci, 2019,228:30-34. DOI: 10.1016/j.lfs.2019.04.042.
    [18]
    DariS, FadaiNT, O'DeaRD. Modelling the effect of matrix metalloproteinases in dermal wound healing[J]. Bull Math Biol, 2023, 85(10):96. DOI: 10.1007/s11538-023-01195-8.
    [19]
    HuMS, MaanZN, WuJC, et al. Tissue engineering and regenerative repair in wound healing[J]. Ann Biomed Eng, 2014,42(7):1494-1507. DOI: 10.1007/s10439-014-1010-z.
    [20]
    JiangX, WangY, FanD, et al. A novel human-like collagen hemostatic sponge with uniform morphology, good biodegradability and biocompatibility[J]. J Biomater Appl, 2017,31(8):1099-1107. DOI: 10.1177/0885328216687663.
    [21]
    Mammadova-BachE, Gil-PulidoJ, SarukhanyanE, et al. Platelet glycoprotein Ⅵ promotes metastasis through interaction with cancer cell-derived galectin-3[J]. Blood, 2020, 135(14):1146-1160. DOI: 10.1182/blood.2019002649.
    [22]
    SchwarzD, LipoldováM, ReineckeH, et al. Targeting inflammation with collagen[J]. Clin Transl Med, 2022,12(5):e831. DOI: 10.1002/ctm2.831.
    [23]
    ZhangY, WangY, LiY, et al. Application of collagen-based hydrogel in skin wound healing[J]. Gels, 2023, 9(3):185. DOI: 10.3390/gels9030185.
    [24]
    DasP, MannaS, RoyS, et al. Polymeric biomaterials-based tissue engineering for wound healing: a systemic review[J/OL]. Burns Trauma, 2023,11:tkac058[2023-10-26]. https://pubmed.ncbi.nlm.nih.gov/36761088/. DOI: 10.1093/burnst/tkac058.
    [25]
    DuCheyne C, TayH, De SpiegelaereW. The complex TIE between macrophages and angiogenesis[J]. Anat Histol Embryol, 2020, 49(5):585-596. DOI: 10.1111/ahe.12518.
    [26]
    MarnerosAG, OlsenBR. The role of collagen-derived proteolytic fragments in angiogenesis[J]. Matrix Biol, 2001, 20(5/6):337-345. DOI: 10.1016/s0945-053x(01)00151-2.
    [27]
    DarbyIA, LaverdetB, BontéF, et al. Fibroblasts and myofibroblasts in wound healing[J]. Clin Cosmet Investig Dermatol, 2014,7:301-311. DOI: 10.2147/CCID.S50046.
    [28]
    GeahchanS, BaharloueiP, RahmanA. Marine collagen: a promising biomaterial for wound healing, skin anti-aging, and bone regeneration[J]. Mar Drugs, 2022, 20(1):61. DOI: 10.3390/md20010061.
    [29]
    BhartiS, MonikaV, AnandK, et al. Natural polymers used in the dressing materials for wound healing: past, present and future[J]. J Polym Sci, 2023, 1:1-26. DOI: 10.1002/pol.20220734.
    [30]
    SalvatoreL, GalloN, AielloD, et al. An insight on type Ⅰ collagen from horse tendon for the manufacture of implantable devices[J]. Int J Biol Macromol, 2020, 154:291-306. DOI: 10.1016/j.ijbiomac.2020.03.082.
    [31]
    PanggabeanJA, SbPAdiguna, HardhiyunaM, et al. Cutting edge aquatic-based collagens in tissue engineering[J]. Mar Drugs, 2023, 21(2):87. DOI: 10.3390/md21020087.
    [32]
    SubhanF, HussainZ, TauseefI, et al. A review on recent advances and applications of fish collagen[J]. Crit Rev Food Sci Nutr, 2021,61(6):1027-1037. DOI: 10.1080/10408398.2020.1751585.
    [33]
    LeeEH, ChunSY, LeeJN, et al. Optimized collagen extraction process to obtain high purity and large quantity of collagen from human perirenal adipose tissue[J]. Biomed Res Int, 2022, 1040/8398:1027-1037. DOI: 10.1080/10408398.2020.1751585.
    [34]
    YouS, LiuS, DongX, et al. Intravaginal administration of human type Ⅲ collagen-derived biomaterial with high cell-adhesion activity to treat vaginal atrophy in rats[J]. ACS Biomater Sci Eng, 2020,6(4):1977-1988. DOI: 10.1021/acsbiomaterials.9b01649.
    [35]
    HabibiS, MohammadiT, HMTShiraziR, et al. A bilayer mupirocin/bupivacaine-loaded wound dressing based on chitosan/poly (vinyl alcohol) nanofibrous mat: preparation, characterization, and controlled drug release[J]. Int J Biol Macromol, 2023,240:124399. DOI: 10.1016/j.ijbiomac.2023.124399.
    [36]
    杨加敏,胥义,党航宇,等.组织器官脱细胞支架的制备及研究进展[J].生物工程学报, 2022, 38(6): 2169-2186. DOI: 10.13345/j.cjb.210772.
    [37]
    ZhangQ, ChangC, QianC, et al. Photo-crosslinkable amniotic membrane hydrogel for skin defect healing[J]. Acta Biomater, 2021, 125:197-207. DOI: 10.1016/j.actbio.2021.02.043.
    [38]
    ZhangQY, TanJ, NieR, et al. Acceleration of wound healing by composite small intestinal submucosa hydrogels through immunomodulation[J]. Compos Part B-Eng, 2023, 2554:110550. DOI: 10.1016/j.compositesb.2023.110550.
    [39]
    LiD, SunWQ, WangT, et al. Evaluation of a novel tilapia-skin acellular dermis matrix rationally processed for enhanced wound healing[J]. Mater Sci Eng C Mater Biol Appl, 2021,127:112202. DOI: 10.1016/j.msec.2021.112202.
    [40]
    YangC, ZhangY, ZhangX, et al. An injectable, self-healing, and antioxidant collagen- and hyaluronic acid-based hydrogel mediated with gallic acid and dopamine for wound repair[J]. Carbohydr Polym, 2023,320:121231. DOI: 10.1016/j.carbpol.2023.121231.
    [41]
    ZhangM, DengF, TangL, et al. Super-ductile, injectable, fast self-healing collagen-based hydrogels with multi-responsive and accelerated wound-repair properties[J]. Chem Eng J, 2020, 405:126756. DOI: 10.1016/j.cej.2020.126756.
    [42]
    BaltazarT, MerolaJ, CatarinoC, et al. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells[J]. Tissue Eng Part A, 2020, 26(5/6):227-238. DOI: 10.1089/ten.TEA.2019.0201.
    [43]
    GriffithsM, OjehN, LivingstoneR, et al. Survival of Apligraf in acute human wounds[J]. Tissue Eng, 2004,10(7/8):1180-1195. DOI: 10.1089/ten.2004.10.1180.
    [44]
    ZhangZ, FengY, WangL, et al. A review of preparation methods of porous skin tissue engineering scaffolds[J]. Mater Today Commun, 2022, 32:104109. DOI: 10.1016/j.mtcomm.2022.104109.
    [45]
    QiLH, MuLX, GuoXJ, et al. Fast expandable chitosan-fibers cryogel from ambient drying for noncompressible bleeding control and in situ tissue regeneration[J]. Adv Funct Mater, 2023, 33:2212231. DOI: 10.1002/adfm.202212231.
    [46]
    LiuW, YangC, GaoR, et al. Polymer composite sponges with inherent antibacterial, hemostatic, inflammation-modulating and proregenerative performances for methicillin-resistant Staphylococcus aureus-infected wound healing[J]. Adv Healthc Mater, 2021,10(22):e2101247. DOI: 10.1002/adhm.202101247.
    [47]
    ChenA, AnY, HuangW, et al. Highly water-preserving zwitterionic betaine-incorporated collagen sponges with anti-oxidation and anti-inflammation for wound regeneration[J]. Front Cell Dev Biol, 2020,8:491. DOI: 10.3389/fcell.2020.00491.
    [48]
    KumarM, HillesAR, GeY, et al. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: their current status with regulatory perspective[J]. Int J Biol Macromol, 2023, 234:123696. DOI: 10.1016/j.ijbiomac.2023.123696.
    [49]
    AntmenE, VranaNE, HasirciV. The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures[J]. Biomater Sci, 2021, 9(24):8090-8110. DOI: 10.1039/d1bm00840d.
    [50]
    HuC, ChuC, LiuL, et al. Dissecting the microenvironment around biosynthetic scaffolds in murine skin wound healing[J]. Sci Adv, 2021, 7(22):eabf0787. DOI: 10.1126/sciadv.abf0787.
    [51]
    ZouY, ZhouC, LiZ, et al. Hydrophobic tetracycline immobilized in fibrous hyaluronan regulates adhesive collagen-based hydrogel stability for infected wound healing[J]. Small, 2023,19(45):e2303414. DOI: 10.1002/smll.202303414.
    [52]
    ChenY, YuanZ, SunW, et al. Vascular endothelial growth factor-recruiting nanofiber bandages promote multifunctional skin regeneration via improved angiogenesis and immunomodulation[J]. Adv Fiber Mater, 2022, 5:327-348. DOI: 10.1007/s42765-022-00226-8.
    [53]
    AndonegiM, HerasKL, Santos-VizcaínoE, et al. Structure-properties relationship of chitosan/collagen films with potential for biomedical applications[J]. Carbohydr Polym, 2020,237:116159. DOI: 10.1016/j.carbpol.2020.116159.
    [54]
    LengQ, LiY, PangX, et al. Curcumin nanoparticles incorporated in PVA/collagen composite films promote wound healing[J]. Drug Deliv, 2020, 27(1):1676-1685. DOI: 10.1080/10717544.2020.1853280.
    [55]
    ChenJ, HuangZ, ZhangH, et al. Three-dimensional layered nanofiber sponge with in situ grown silver- metal organic framework for enhancing wound healing[J]. Chem Eng J, 2022, 443:136234,2-11. DOI: https://doi.org/10.1016/j.cej.2022.136234.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (318) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return