Citation: | Wang YW,Zhang H,Cao P,et al.Influences and mechanism of extracellular vesicles from dermal papilla cells of mice on human hypertrophic scar fibroblasts[J].Chin J Burns Wounds,2024,40(3):258-265.DOI: 10.3760/cma.j.cn501225-20231107-00185. |
[1] |
LiY, ZhangJL, ZhangW, et al. MicroRNA-192 regulates hypertrophic scar fibrosis by targeting SIP1[J]. J Mol Histol, 2017, 48(5/6): 357-366. DOI: 10.1007/s10735-017-9734-3.
|
[2] |
MaK, KwonSH, PadmanabhanJ, et al. Controlled delivery of a focal adhesion kinase inhibitor results in accelerated wound closure with decreased scar formation[J]. J Invest Dermatol, 2018, 138(11): 2452-2460. DOI: 10.1016/j.jid.2018.04.034.
|
[3] |
LiY, ZhangJ, ShiJH, et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis[J]. Stem Cell Res Ther, 2021, 12(1): 221. DOI: 10.1186/s13287-021-02290-0.
|
[4] |
LiC, WeiSQ, XuQC, et al. Application of ADSCs and their exosomes in scar prevention[J]. Stem Cell Rev Rep, 2022, 18(3): 952-967. DOI: 10.1007/s12015-021-10252-5.
|
[5] |
曹鹏, 王运帷, 官浩, 等. 机械张力对兔耳增生性瘢痕的形成及转化生长因子β
1/Smad信号通路的影响[J]. 中华烧伤与创面修复杂志, 2022, 38(12): 1162-1169. DOI: 10.3760/cma.j.cn501120-20211213-00412.
|
[6] |
王运帷, 刘洋, 曹鹏, 等. Krüppel样因子4对脓毒症小鼠炎症反应与脏器损伤的作用[J]. 中华烧伤与创面修复杂志, 2022, 38(11): 1047-1056. DOI: 10.3760/cma.j.cn501225-20220111-00005.
|
[7] |
WangJ, ZhaoM, ZhangHY, et al. KLF4 alleviates hypertrophic scar fibrosis by directly activating BMP4 transcription[J]. Int J Biol Sci, 2022, 18(8): 3324-3336. DOI: 10.7150/ijbs.71167.
|
[8] |
RippaAL, KalabushevaEP, VorotelyakEA. Regeneration of dermis: scarring and cells involved[J]. Cells, 2019, 8(6): 607. DOI: 10.3390/cells8060607.
|
[9] |
PlikusMV, Guerrero-JuarezCF, ItoM, et al. Regeneration of fat cells from myofibroblasts during wound healing[J]. Science, 2017,355(6326):748-752. DOI: 10.1126/science.aai8792.
|
[10] |
周圳滔, 赵沁园, 赵钧, 等. 毛囊及相关干细胞在创面无瘢痕愈合中的研究进展[J]. 中国修复重建外科杂志, 2021, 35(2): 241-245. DOI: 10.7507/1002-1892.202005086.
|
[11] |
王运帷, 罗亮, 曹鹏, 等. 真皮毛乳头细胞分离培养技术的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2022, 17(6): 520-523. DOI: 10.3877/cma.j.issn.1673-9450.2022.06.010.
|
[12] |
TopouziH, LoganNJ, WilliamsG, et al. Methods for the isolation and 3D culture of dermal papilla cells from human hair follicles[J]. Exp Dermatol, 2017, 26(6): 491-496. DOI: 10.1111/exd.13368.
|
[13] |
HuangCY, OgawaR. Systemic factors that shape cutaneous pathological scarring[J]. FASEB J, 2020,34(10):13171-13184. DOI: 10.1096/fj.202001157R.
|
[14] |
GriffinMF, desJardins-ParkHE, MascharakS, et al. Understanding the impact of fibroblast heterogeneity on skin fibrosis[J]. Dis Model Mech, 2020,13(6):dmm044164. DOI: 10.1242/dmm.044164.
|
[15] |
FinnertyCC, JeschkeMG, BranskiLK, et al. Hypertrophic scarring: the greatest unmet challenge after burn injury[J]. Lancet, 2016,388(10052):1427-1436. DOI: 10.1016/S0140-6736(16)31406-4.
|
[16] |
LouGH, ChenZ, ZhengM, et al. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases[J]. Exp Mol Med, 2017,49(6):e346. DOI: 10.1038/emm.2017.63.
|
[17] |
ZhaoAG, ShahK, CromerB, et al. Mesenchymal stem cell-derived extracellular vesicles and their therapeutic potential[J]. Stem Cells Int, 2020, 2020: 8825771. DOI: 10.1155/2020/8825771.
|
[18] |
TianSY, ZhouX, ZhangM, et al. Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages[J]. Stem Cell Res Ther, 2022, 13(1): 330. DOI: 10.1186/s13287-022-03010-y.
|
[19] |
KamolzLP, HeckerA. Molecular mechanisms related to burns, burn wound healing and scarring[J]. Int J Mol Sci, 2023, 24(10): 8785. DOI: 10.3390/ijms24108785.
|
[20] |
MonyMP, HarmonKA, HessR, et al. An updated review of hypertrophic scarring[J]. Cells, 2023, 12(5):678. DOI: 10.3390/cells12050678.
|
[21] |
AngeliniA, TrialJ, Ortiz-UrbinaJ, et al. Mechanosensing dysregulation in the fibroblast: a hallmark of the aging heart[J]. Ageing Res Rev, 2020,63:101150. DOI: 10.1016/j.arr.2020.101150.
|
[22] |
HinzB. Myofibroblasts[J]. Exp Eye Res, 2016,142:56-70. DOI: 10.1016/j.exer.2015.07.009.
|
[23] |
ZhaoW, ZhangR, ZangCY, et al. Exosome derived from mesenchymal stem cells alleviates pathological scars by inhibiting the proliferation, migration and protein expression of fibroblasts via delivering miR-138-5p to target SIRT1[J]. Int J Nanomedicine, 2022, 17: 4023-4038. DOI: 10.2147/IJN.S377317.
|
[24] |
ShieldsJM, ChristyRJ, YangVW. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest[J]. J Biol Chem, 1996,271(33):20009-20017. DOI: 10.1074/jbc.271.33.20009.
|
[25] |
LuSZ, JollyAJ, StrandKA, et al. Smooth muscle-derived progenitor cell myofibroblast differentiation through KLF4 downregulation promotes arterial remodeling and fibrosis[J]. JCI Insight, 2020,5(23):e139445. DOI: 10.1172/jci.insight.139445.
|
[26] |
WenY, LuXH, RenJF, et al. KLF4 in macrophages attenuates TNFα-mediated kidney injury and fibrosis[J]. J Am Soc Nephrol, 2019, 30(10): 1925-1938. DOI: 10.1681/ASN.2019020111.
|
[27] |
HandaP, ThomasS, Morgan-StevensonV, et al. Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis[J]. J Leukoc Biol, 2019,105(5):1015-1026. DOI: 10.1002/JLB.3A0318-108R.
|
[28] |
WangYW, ShenK, SunYL, et al. Extracellular vesicles from 3D cultured dermal papilla cells improve wound healing via Krüppel-like factor 4/vascular endothelial growth factor A -driven angiogenesis[J/OL]. Burns Trauma, 2023,11:tkad034[2023-11-07]. https://pubmed.ncbi.nlm.nih.gov/37908562/. DOI: 10.1093/burnst/tkad034.
|