Citation: | Zhang W,Shao JM,Yang M,et al.Research advance on the effects of surface interface topographies and physicochemical properties of biomaterial on macrophages and their application in wound healing[J].Chin J Burns Wounds,2024,40(9):891-896.DOI: 10.3760/cma.j.cn501225-20231110-00190. |
[1] |
ShalabiMM, GortemakerA, Van'tHof MA, et al. Implant surface roughness and bone healing: a systematic review[J]. J Dent Res, 2006,85(6):496-500. DOI: 10.1177/154405910608500603.
|
[2] |
BarthKA, WaterfieldJD, BrunetteDM. The effect of surface roughness on RAW 264.7 macrophage phenotype[J]. J Biomed Mater Res A, 2013,101(9):2679-2688. DOI: 10.1002/jbm.a.34562.
|
[3] |
ZhangY, ChengX, JansenJA, et al. Titanium surfaces characteristics modulate macrophage polarization[J]. Mater Sci Eng C Mater Biol Appl, 2019,95:143-151. DOI: 10.1016/j.msec.2018.10.065.
|
[4] |
AbariciaJO, ShahAH, ChaubalM, et al. Wnt signaling modulates macrophage polarization and is regulated by biomaterial surface properties[J]. Biomaterials, 2020,243:119920. DOI: 10.1016/j.biomaterials.2020.119920.
|
[5] |
AveryD, MorandiniL, SheakleyLS, et al. Canonical Wnt signaling enhances pro-inflammatory response to titanium by macrophages[J]. Biomaterials, 2022,289:121797. DOI: 10.1016/j.biomaterials.2022.121797.
|
[6] |
HotchkissKM, ReddyGB, HyzySL, et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation[J]. Acta Biomater, 2016,31:425-434. DOI: 10.1016/j.actbio.2015.12.003.
|
[7] |
HamletSM, LeeR, MoonHJ, et al. Hydrophilic titanium surface-induced macrophage modulation promotes pro-osteogenic signalling[J]. Clin Oral Implants Res, 2019,30(11):1085-1096. DOI: 10.1111/clr.13522.
|
[8] |
MironRJ, BohnerM, ZhangY, et al. Osteoinduction and osteoimmunology: emerging concepts[J]. Periodontol 2000, 2024,94(1):9-26. DOI: 10.1111/prd.12519.
|
[9] |
ChenY, LuoZ, MengW, et al. Decoding the "fingerprint" of implant materials: insights into the foreign body reaction[J]. Small, 2024,20(23):e2310325. DOI: 10.1002/smll.202310325.
|
[10] |
BarkalAA, WeiskopfK, KaoKS, et al. Engagement of MHC class Ⅰ by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy[J]. Nat Immunol, 2018,19(1):76-84. DOI: 10.1038/s41590-017-0004-z.
|
[11] |
JiL, ZhaoX, ZhangB, et al. Slc6a8-mediated creatine uptake and accumulation reprogram macrophage polarization via regulating cytokine responses[J]. Immunity, 2019,51(2):272-284.e7. DOI: 10.1016/j.immuni.2019.06.007.
|
[12] |
LiJ, JiangX, LiH, et al. Tailoring materials for modulation of macrophage fate[J]. Adv Mater, 2021,33(12):e2004172. DOI: 10.1002/adma.202004172.
|
[13] |
SunL, ChenX, MaK, et al. Novel titanium implant: a 3D multifunction architecture with charge-trapping and piezoelectric self-stimulation[J]. Adv Healthc Mater, 2023,12(11):e2202620. DOI: 10.1002/adhm.202202620.
|
[14] |
DengH, YangX, WangH, et al. Tailoring the surface charges of iron-crosslinked dextran nanogels towards improved tumor-associated macrophage targeting[J]. Carbohydr Polym, 2024,325:121585. DOI: 10.1016/j.carbpol.2023.121585.
|
[15] |
XiaoB, LiuY, ChandrasiriI, et al. Impact of nanoparticle physicochemical properties on protein corona and macrophage polarization[J/OL]. ACS Appl Mater Interfaces, 2023(2023-04-14)[2023-11-10].https://pubmed.ncbi.nlm.nih.gov/36916683/.DOI: 10.1021/acsami.2c22471.[published online ahead of print].
|
[16] |
GargK, PullenNA, OskeritzianCA, et al. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds[J]. Biomaterials, 2013,34(18):4439-4451. DOI: 10.1016/j.biomaterials.2013.02.065.
|
[17] |
HoriiT, TsujimotoH, HagiwaraA, et al. Effects of fiber diameter and spacing size of an artificial scaffold on the in vivo cellular response and tissue remodeling[J]. ACS Appl Bio Mater, 2021,4(9):6924-6936. DOI: 10.1021/acsabm.1c00572.
|
[18] |
MoonH, CremmelCV, KulpaA, et al. Novel grooved substrata stimulate macrophage fusion, CCL2 and MMP-9 secretion[J]. J Biomed Mater Res A, 2016, 104(9):2243-2254. DOI: 10.1002/jbm.a.35757.
|
[19] |
WangT, LuuTU, ChenA, et al. Topographical modulation of macrophage phenotype by shrink-film multi-scale wrinkles[J]. Biomater Sci, 2016,4(6):948-952. DOI: 10.1039/c6bm00224b.
|
[20] |
BartneckM, HeffelsKH, PanY, et al. Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres[J]. Biomaterials, 2012,33(16):4136-4146. DOI: 10.1016/j.biomaterials.2012.02.050.
|
[21] |
ZhuG, ZhangR, XieQ, et al. Shish-kebab structure fiber with nano and micro diameter regulate macrophage polarization for anti-inflammatory and bone differentiation[J]. Mater Today Bio, 2023,23:100880. DOI: 10.1016/j.mtbio.2023.100880.
|
[22] |
WuS, ShanZ, XieL, et al. Mesopore controls the responses of blood clot-immune complex via modulating fibrin network[J]. Adv Sci (Weinh), 2022,9(3):e2103608. DOI: 10.1002/advs.202103608.
|
[23] |
MaharaA, KojimaK, YamamotoM, et al. Accelerated tissue regeneration in decellularized vascular grafts with a patterned pore structure[J]. J Mater Chem B, 2022,10(14):2544-2550. DOI: 10.1039/d1tb02271g.
|
[24] |
McWhorterFY, WangT, NguyenP, et al. Modulation of macrophage phenotype by cell shape[J]. Proc Natl Acad Sci U S A, 2013,110(43):17253-17258. DOI: 10.1073/pnas.1308887110.
|
[25] |
BartneckM, SchulteVA, PaulNE, et al. Induction of specific macrophage subtypes by defined micro-patterned structures[J]. Acta Biomater, 2010,6(10):3864-3872. DOI: 10.1016/j.actbio.2010.04.025.
|
[26] |
MohiuddinM, PanHA, HungYC, et al. Control of growth and inflammatory response of macrophages and foam cells with nanotopography[J]. Nanoscale Res Lett, 2012,7(1):394. DOI: 10.1186/1556-276X-7-394.
|
[27] |
VeisehO, DoloffJC, MaM, et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates[J]. Nat Mater, 2015,14(6):643-651. DOI: 10.1038/nmat4290.
|
[28] |
RakicM, RadunovicM, Petkovic-CurcinA, et al. Study on the immunopathological effect of titanium particles in peri-implantitis granulation tissue: a case-control study[J]. Clin Oral Implants Res,2022, 33(6):656-666. DOI: 10.1111/clr.13928.
|
[29] |
Toledano-SerrabonaJ, Camps-FontO, de MoraesDP, et al. Ion release and local effects of titanium metal particles from dental implants: an experimental study in rats[J]. J Periodontol, 2023,94(1):119-129. DOI: 10.1002/JPER.22-0091.
|
[30] |
TylekT, BlumC, HrynevichA, et al. Precisely defined fiber scaffolds with 40 μm porosity induce elongation driven M2-like polarization of human macrophages[J]. Biofabrication, 2020,12(2):025007. DOI: 10.1088/1758-5090/ab5f4e.
|
[31] |
SommerfeldSD, CherryC, SchwabRM, et al. Interleukin-36γ-producing macrophages drive IL-17-mediated fibrosis[J]. Sci Immunol, 2019,4(40):eaax4783.DOI: 10.1126/sciimmunol.aax4783.
|
[32] |
HeC , YuL , YaoH ,et al. Combinatorial photothermal 3D‐printing scaffold and checkpoint blockade inhibits growth/metastasis of breast cancer to bone and accelerates osteogenesis[J].Adv Funct Mater, 2021, 31:2006214. DOI: 10.1002/adfm.202006214.
|
[33] |
LiuH, WuQ, LiuS, et al. The role of integrin αvβ3 in biphasic calcium phosphate ceramics mediated M2 Macrophage polarization and the resultant osteoinduction[J]. Biomaterials, 2024,304:122406. DOI: 10.1016/j.biomaterials.2023.122406.
|
[34] |
ZhouK, YangC, ShiK, et al. Activated macrophage membrane-coated nanoparticles relieve osteoarthritis-induced synovitis and joint damage[J]. Biomaterials, 2023,295:122036. DOI: 10.1016/j.biomaterials.2023.122036.
|
[35] |
LiJ, LiL, WuT, et al. An injectable thermosensitive hydrogel containing resveratrol and dexamethasone-loaded carbonated hydroxyapatite microspheres for the regeneration of osteoporotic bone defects[J]. Small Methods, 2024,8(1):e2300843. DOI: 10.1002/smtd.202300843.
|
[36] |
WhitakerR, Hernaez-EstradaB, HernandezRM, et al. Immunomodulatory biomaterials for tissue repair[J]. Chem Rev, 2021,121(18):11305-11335. DOI: 10.1021/acs.chemrev.0c00895.
|
[37] |
GroseR, WernerS. Wound-healing studies in transgenic and knockout mice[J]. Mol Biotechnol, 2004,28(2):147-166. DOI: 10.1385/MB:28:2:147.
|
[38] |
Al SadounH. Macrophage phenotypes in normal and diabetic wound healing and therapeutic interventions[J]. Cells, 2022, 11(15):2430. DOI: 10.3390/cells11152430.
|
[39] |
VelnarT, BaileyT, SmrkoljV. The wound healing process: an overview of the cellular and molecular mechanisms[J]. J Int Med Res, 2009,37(5):1528-1542. DOI: 10.1177/147323000903700531.
|
[40] |
MartinezFO, SicaA, MantovaniA, et al. Macrophage activation and polarization[J]. Front Biosci, 2008,13:453-461. DOI: 10.2741/2692.
|
[41] |
ElliottMR, KosterKM, MurphyPS. Efferocytosis signaling in the regulation of macrophage inflammatory responses[J]. J Immunol, 2017,198(4):1387-1394. DOI: 10.4049/jimmunol.1601520.
|
[42] |
WangH, HuangR, BaiL, et al. Extracellular matrix-mimetic immunomodulatory hydrogel for accelerating wound healing[J]. Adv Healthc Mater, 2023,12(27):e2301264. DOI: 10.1002/adhm.202301264.
|
[43] |
LiL, QianY, JiangC, et al. The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds[J]. Biomaterials, 2012,33(12):3428-3445. DOI: 10.1016/j.biomaterials.2012.01.038.
|
[44] |
LiuW, GaoR, YangC, et al. ECM-mimetic immunomodulatory hydrogel for methicillin-resistant Staphylococcus aureus-infected chronic skin wound healing[J]. Sci Adv, 2022,8(27):eabn7006. DOI: 10.1126/sciadv.abn7006.
|
[45] |
QianY, ZhengY, JinJ, et al. Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold[J]. Adv Mater, 2022,34(29):e2200521. DOI: 10.1002/adma.202200521.
|