Volume 40 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Liu JQ,Han YG,Li XY,et al.Research advances on animal models of hypertrophic scar[J].Chin J Burns Wounds,2024,40(11):1095-1100.DOI: 10.3760/cma.j.cn501225-20231127-00208.
Citation: Liu JQ,Han YG,Li XY,et al.Research advances on animal models of hypertrophic scar[J].Chin J Burns Wounds,2024,40(11):1095-1100.DOI: 10.3760/cma.j.cn501225-20231127-00208.

Research advances on animal models of hypertrophic scar

doi: 10.3760/cma.j.cn501225-20231127-00208
More Information
  • A suitable animal model of hypertrophic scar is of great importance for studying pathogenesis of hypertrophic scar and exploring more efficacious treatment. Researchers have tried to establish hypertrophic scar models in various animals, and the rabbit ear hypertrophic scar model is the most widely used one. In recent years, novel models such as the rat tail hypertrophic scar model and ethanol-induced rabbit ear hypertrophic scar model have been proposed. These models inherit the advantages of traditional models while simplifying the manufacturing process, presenting significant research potential. This paper provides the research advances on animal models of hypertrophic scar in nude mice, mice, rats, rabbits, pigs, guinea pigs, and dogs, offering insights for the researchers in selecting appropriate models, refining existing models, or creating new animal models.

     

  • loading
  • [1]
    LimandjajaGC,NiessenFB, ScheperRJ, et al. Hypertrophic scars and keloids: overview of the evidence and practical guide for differentiating between these abnormal scars[J]. Exp Dermatol, 2021,30(1):146-161. DOI: 10.1111/exd.14121.
    [2]
    IshackS, LipnerSR. A review of 3-dimensional skin bioprinting techniques: applications, approaches, and trends[J]. Dermatol Surg, 2020,46(12):1500-1505. DOI: 10.1097/DSS.0000000000002378.
    [3]
    ShetlarMR, ShetlarCL, HendricksL, et al. The use of athymic nude mice for the study of human keloids[J].Proc Soc Exp Biol Med,1985,179(4):549-552.DOI: 10.3181/00379727-179-rc3.
    [4]
    KischerCW, PindurJ, ShetlarMR, et al. Implants of hypertrophic scars and keloids into the nude (athymic) mouse: viability and morphology[J].J Trauma,1989,29(5):672-677. DOI: 10.1097/00005373-198905000-00023.
    [5]
    LiSY, YangJX, SunJC, et al. Adipose-derived mesenchymal stem cells alleviate hypertrophic scar by inhibiting bioactivity and inducing apoptosis in hypertrophic scar fibroblasts[J]. Cells,2022,11(24):4024. DOI: 10.3390/cells11244024.
    [6]
    RobbEC,WaymackJP,WardenGD, et al. A new model for studying the development of human hypertrophic burn scar formation[J]. J Burn Care Rehabil,1987,8(5):371-375. DOI: 10.1097/00004630-198709000-00006.
    [7]
    YangDY,LiSR,WuJL,et al. Establishment of a hypertrophic scar model by transplanting full-thickness human skin grafts onto the backs of nude mice[J]. Plast Reconstr Surg,2007,119(1):104-109. DOI: 10.1097/01.prs.0000244828.80490.62.
    [8]
    MomtaziM, KwanP, DingJ,et al. A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar[J]. Wound Repair Regen,2013,21(1):77-87. DOI: 10.1111/j.1524-475X.2012.00856.x.
    [9]
    AarabiS, BhattKA, ShiY,et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis[J]. FASEB J,2007,21(12):3250-3261.DOI: 10.1096/fj.07-8218com.
    [10]
    DavidsonJM, YuF, OpalenikSR. Splinting strategies to overcome confounding wound contraction in experimental animal models[J]. Adv Wound Care (New Rochelle), 2013,2(4):142-148. DOI: 10.1089/wound.2012.0424.
    [11]
    JimiS, SaparovA, KoizumiS, et al. A novel mouse wound model for scar tissue formation in abdominal muscle wall[J]. J Vet Med Sci,2021,83(12):1933-1942. DOI: 10.1292/jvms.21-0464.
    [12]
    IbrahimMM, BondJ, BergeronA, et al. A novel immune competent murine hypertrophic scar contracture model: a tool to elucidate disease mechanism and develop new therapies[J]. Wound Repair Regen,2014,22(6):755-764.DOI: 10.1111/wrr.12238.
    [13]
    CameronAM, AdamsDH, GreenwoodJE, et al. A novel murine model of hypertrophic scarring using subcutaneous infusion of bleomycin[J]. Plast Reconstr Surg,2014,133(1):69-78.DOI: 10.1097/01.prs.0000436821.26709.a7.
    [14]
    XuC, ZhangH, YangC,et al. miR-125b-5p delivered by adipose-derived stem cell exosomes alleviates hypertrophic scarring by suppressing Smad2[J/OL]. Burns Trauma,2024,12:tkad064[2024-10-24].https://pubmed.ncbi.nlm.nih.gov/38765787/.DOI: 10.1093/burnst/tkad064.
    [15]
    YuanR, DaiX, LiY, et al. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling[J]. Mol Med Rep,2021,24(5):758. DOI: 10.3892/mmr.2021.12398.
    [16]
    GolbergA, VilligerM, KhanS, et al. Preventing scars after injury with partial irreversible electroporation[J]. J Invest Dermatol,2016,136(11):2297-2304.DOI: 10.1016/j.jid.2016.06.620.
    [17]
    KimM, KimSW, KimH, et al. Development of a reproducible in vivo laser-induced scar model for wound healing study and management[J]. Biomed Opt Express,2019,10(4):1965-1977. DOI: 10.1364/BOE.10.001965.
    [18]
    SonDO, HinzB. A rodent model of hypertrophic scarring: splinting of rat wounds[J]. Methods Mol Biol, 2021,2299:405-417. DOI: 10.1007/978-1-0716-1382-5_27.
    [19]
    MarchesiniA, De FrancescoF, Mattioli-BelmonteM, et al. A new animal model for pathological subcutaneous fibrosis: surgical technique and in vitro analysis[J]. Front Cell Dev Biol,2020,8:542. DOI: 10.3389/fcell.2020.00542.
    [20]
    ZhouS, WangW, ZhouS, et al. A novel model for cutaneous wound healing and scarring in the rat[J]. Plast Reconstr Surg,2019,143(2):468-477.DOI: 10.1097/PRS.0000000000005274.
    [21]
    HeJ, FangB, ShanS, et al. Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1[J]. Cell Death Dis, 2021,12(3):226. DOI: 10.1038/s41419-021-03481-6.
    [22]
    MorrisDE, WuL, ZhaoLL, et al. Acute and chronic animal models for excessive dermal scarring: quantitative studies[J]. Plast Reconstr Surg, 1997,100(3):674-681. DOI: 10.1097/00006534-199709000-00021.
    [23]
    朱桂英,徐斌,蔡景龙.兔耳解剖特点与成功建立增生性瘢痕模型的相关性实验研究[J].中华整形外科杂志,2008,24(3): 216-219. DOI: 10.3760/j.issn:1009-4598.2008.03.014.
    [24]
    LeeAR. Enhancing dermal matrix regeneration and biomechanical properties of 2nd degree-burn wounds by EGF-impregnated collagen sponge dressing[J]. Arch Pharm Res,2005,28(11):1311-1316. DOI: 10.1007/BF02978217.
    [25]
    ZuW, JiangB, LiuH. Establishment of a long-term hypertrophic scar model by injection of anhydrous alcohol: a rabbit model[J]. Int J Exp Pathol,2021,102(2):105-112. DOI: 10.1111/iep.12389.
    [26]
    RösslerS, NischwitzSP, LuzeH,et al. In vivo models for hypertrophic scars-a systematic review[J]. Medicina (Kaunas),2022,58(6):736.DOI: 10.3390/medicina58060736.
    [27]
    HuangJ, ChenJ, WoY, et al. CO2 fractional laser combined with 5-fluorouracil ethosomal gel treatment of hypertrophic scar macro-, microscopic, and molecular mechanism of action in a rabbit animal model[J]. Rejuvenation Res,2021,24(2):131-138. DOI: 10.1089/rej.2019.2204.
    [28]
    ChenHY, LeiY, OuYangHW, et al. Experimental comparative study of the effect of fractional CO2 laser combined with pulsed dye laser versus each laser alone on the treatment of hypertrophic scar of rabbit ears[J]. J Cosmet Dermatol,2022,21(3):979-990. DOI: 10.1111/jocd.14732.
    [29]
    ZengJ, HuangTY, WangZZ, et al. Scar-reducing effects of gambogenic acid on skin wounds in rabbit ears[J]. Int Immunopharmacol,2021,90:107200.DOI: 10.1016/j.intimp.2020.107200.
    [30]
    MengX, YuZ, XuW, et al. Control of fibrosis and hypertrophic scar formation via glycolysis regulation with IR780[J/OL]. Burns Trauma,2022,10:tkac015[2023-11-27].https://pubmed.ncbi.nlm.nih.gov/35769829/.DOI: 10.1093/burnst/tkac015.
    [31]
    MonyMP, HarmonKA, HessR, et al. An updated review of hypertrophic scarring[J]. Cells,2023,12(5):678. DOI: 10.3390/cells12050678.
    [32]
    RodriguesAE, DolivoD, LiY, et al. Comparison of thermal burn-induced and excisional-induced scarring in animal models: a review of the literature[J]. Adv Wound Care (New Rochelle),2022,11(3):150-162. DOI: 10.1089/wound.2021.0035.
    [33]
    SummerfieldA, MeurensF, RicklinME. The immunology of the porcine skin and its value as a model for human skin[J]. Mol Immunol,2015,66(1):14-21.DOI: 10.1016/j.molimm.2014.10.023.
    [34]
    ZhuKQ, EngravLH, GibranNS, et al. The female, red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin[J]. Burns,2003,29(7):649-664. DOI: 10.1016/s0305-4179(03)00205-5.
    [35]
    CuttleL, KempfM, PhillipsGE, et al. A porcine deep dermal partial thickness burn model with hypertrophic scarring[J].Burns,2006,32(7):806-820.DOI: 10.1016/j.burns.2006.02.023.
    [36]
    NischwitzSP, FinkJ, SchellneggerM, et al. The role of local inflammation and hypoxia in the formation of hypertrophic scars-a new model in the duroc pig[J]. Int J Mol Sci,2022,24(1):316. DOI: 10.3390/ijms24010316.
    [37]
    Holzer-GeisslerJCJ, SchwingenschuhS, ZachariasM, et al. The impact of prolonged inflammation on wound healing[J]. Biomedicines,2022,10(4):856.DOI: 10.3390/biomedicines10040856.
    [38]
    AksoyMH, VargelI, CanterIH,et al. A new experimental hypertrophic scar model in guinea pigs[J]. Aesthetic Plast Surg,2002,26(5):388-396.DOI: 10.1007/s00266-002-1121-z.
    [39]
    KimuraT. Hairless descendants of Mexican hairless dogs: an experimental model for studying hypertrophic scars[J]. J Cutan Med Surg,2011,15(6):329-339.DOI: 10.2310/7750.2011.10081.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (5) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return