Volume 40 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Liu Y,Liu HY.Cell therapy and wound repair[J].Chin J Burns Wounds,2024,40(3):221-229.DOI: 10.3760/cma.j.cn501225-20240108-00009.
Citation: Liu Y,Liu HY.Cell therapy and wound repair[J].Chin J Burns Wounds,2024,40(3):221-229.DOI: 10.3760/cma.j.cn501225-20240108-00009.

Cell therapy and wound repair

doi: 10.3760/cma.j.cn501225-20240108-00009
Funds:

General Program of National Natural Science Foundation of China 82072173, 82172199, 82272262

Shanghai Directed Projects of Biopharmaceutical Field 22DX1900600

Shanghai Research Center for Burn and Wound Repair 2023ZZ02013

Shanghai Municipal Key Clinical Specialty of China shslczdzk02302

More Information
  • Corresponding author: Liu Yan, Email: rjliuyan@126.com
  • Received Date: 2024-01-08
  • Cell therapy includes living cell-based therapy and cell-derivative therapy that is based on extracellular vesicles and bioactive molecules. As a research hotspot in recent years, cell therapy is a potential strategy to solve the clinical problem of refractory wound repair. The rapid development of material science and cell biology has opened a new prelude to cell therapy, and at the same time, puts forward a new proposition on how to further optimize and apply cell therapy to wound repair. This article reviewed the cell types used for wound treatment, summarized the application and exploration of cell therapy-based new technologies, sorted out the difficulties in the clinical application of existing cell therapies, and looked into the future development trend of cell therapy for wound repair, in order to promote the development of innovative cell therapy system and further improve the clinical wound treatment effect.

     

  • loading
  • [1]
    RheinwaldJG, GreenH. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells[J]. Cell, 1975,6(3):331-343. DOI: 10.1016/s0092-8674(75)80001-8.
    [2]
    GreenH, KehindeO, ThomasJ. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting[J]. Proc Natl Acad Sci U S A, 1979,76(11):5665-5668. DOI: 10.1073/pnas.76.11.5665.
    [3]
    Grafting of burns with cultured epithelium prepared from autologous epidermal cells[J]. Lancet, 1981,1(8211):75-78.
    [4]
    AtiyehBS, CostagliolaM. Cultured epithelial autograft (CEA) in burn treatment: three decades later[J]. Burns, 2007,33(4):405-413. DOI: 10.1016/j.burns.2006.11.002.
    [5]
    AllouniA, PapiniR, LewisD. Spray-on-skin cells in burns: a common practice with no agreed protocol[J]. Burns, 2013,39(7):1391-1394. DOI: 10.1016/j.burns.2013.03.017.
    [6]
    Cooper-JonesB, VisintiniS. A noncultured autologous skin cell spray graft for the treatment of burns [M]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health, 2016:1-11.
    [7]
    HenryS, MapulaS, GreviousM, et al. Maximizing wound coverage in full-thickness skin defects: a randomized-controlled trial of autologous skin cell suspension and widely meshed autograft versus standard autografting[J]. J Trauma Acute Care Surg, 2024,96(1):85-93. DOI: 10.1097/TA.0000000000004120.
    [8]
    LoCH, ChongE, AkbarzadehS, et al. A systematic review: current trends and take rates of cultured epithelial autografts in the treatment of patients with burn injuries[J]. Wound Repair Regen, 2019,27(6):693-701. DOI: 10.1111/wrr.12748.
    [9]
    Ortega-ZilicN, HunzikerT, LäuchliS, et al. EpiDex ® Swiss field trial 2004-2008[J]. Dermatology, 2010,221(4):365-372. DOI: 10.1159/000321333.
    [10]
    CoulombB, FriteauL, BaruchJ, et al. Advantage of the presence of living dermal fibroblasts within in vitro reconstructed skin for grafting in humans[J]. Plast Reconstr Surg, 1998,101(7):1891-1903. DOI: 10.1097/00006534-199806000-00018.
    [11]
    ShamsF, RahimpourA, VahidnezhadH, et al. The utility of dermal fibroblasts in treatment of skin disorders: a paradigm of recessive dystrophic epidermolysis bullosa[J]. Dermatol Ther, 2021,34(4):e15028. DOI: 10.1111/dth.15028.
    [12]
    LammeEN, Van LeeuwenRT, BrandsmaK, et al. Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation[J]. J Pathol, 2000,190(5):595-603. DOI: 10.1002/(SICI)1096-9896(200004)190:5<595::AID-PATH572>3.0.CO;2-V.
    [13]
    SteiglitzBM, MaherRJ, GratzKR, et al. The viable bioengineered allogeneic cellularized construct StrataGraft ® synthesizes, deposits, and organizes human extracellular matrix proteins into tissue type-specific structures and secretes soluble factors associated with wound healing[J]. Burns, 2024,50(2):424-432. DOI: 10.1016/j.burns.2023.06.001.
    [14]
    CaiS, PanY, HanB, et al. Transplantation of human bone marrow-derived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands[J]. Chin Med J (Engl), 2011,124(15):2260-2268.
    [15]
    Castro-ManrrezaME, MontesinosJJ. Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications[J]. J Immunol Res, 2015,2015:394917. DOI: 10.1155/2015/394917.
    [16]
    BronckaersA, HilkensP, MartensW, et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis[J]. Pharmacol Ther, 2014,143(2):181-196. DOI: 10.1016/j.pharmthera.2014.02.013.
    [17]
    Guillamat-PratsR. The role of MSC in wound healing, scarring and regeneration[J]. Cells, 2021, 10(7):1729. DOI: 10.3390/cells10071729.
    [18]
    LiubaviciuteA, IvaskieneT, BiziulevicieneG. Modulated mesenchymal stromal cells improve skin wound healing[J]. Biologicals, 2020,67:1-8. DOI: 10.1016/j.biologicals.2020.08.003.
    [19]
    FalangaV, IwamotoS, ChartierM, et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds[J]. Tissue Eng, 2007, 13(6): 1299-1312. DOI: 10.1089/ten.2006.0278.
    [20]
    CloverAJ, KumarAH, IsaksonM, et al. Allogeneic mesenchymal stem cells, but not culture modified monocytes, improve burn wound healing[J]. Burns, 2015,41(3):548-557. DOI: 10.1016/j.burns.2014.08.009.
    [21]
    LuD, ChenB, LiangZ, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial[J]. Diabetes Res Clin Pract, 2011,92(1):26-36. DOI: 10.1016/j.diabres.2010.12.010.
    [22]
    LatailladeJJ, DoucetC, BeyE, et al. New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy[J]. Regen Med, 2007,2(5):785-794. DOI: 10.2217/17460751.2.5.785.
    [23]
    WettsteinR, SavicM, PiererG, et al. Progenitor cell therapy for sacral pressure sore: a pilot study with a novel human chronic wound model[J]. Stem Cell Res Ther, 2014,5(1):18. DOI: 10.1186/scrt407.
    [24]
    SongY, ZhaoHY, LyuZS, et al. Dysfunctional bone marrow mesenchymal stem cells in patients with poor graft function after allogeneic hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2018,24(10):1981-1989. DOI: 10.1016/j.bbmt.2018.06.021.
    [25]
    LevyO, KuaiR, SirenE, et al. Shattering barriers toward clinically meaningful MSC therapies[J]. Sci Adv, 2020,6(30):eaba6884. DOI: 10.1126/sciadv.aba6884.
    [26]
    FuX, FangL, LiX, et al. Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury[J]. Wound Repair Regen, 2006,14(3):325-335. DOI: 10.1111/j.1743-6109.2006.00128.x.
    [27]
    TakahashiK, YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006,126(4):663-676. DOI: 10.1016/j.cell.2006.07.024.
    [28]
    TanabeK, NakamuraM, NaritaM, et al. Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts[J]. Proc Natl Acad Sci U S A, 2013,110(30):12172-12179. DOI: 10.1073/pnas.1310291110.
    [29]
    BilousovaG, ChenJ, RoopDR. Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage[J]. J Invest Dermatol, 2011,131(4):857-864. DOI: 10.1038/jid.2010.364.
    [30]
    ItohM, Umegaki-AraoN, GuoZ, et al. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs)[J]. PLoS One, 2013,8(10):e77673. DOI: 10.1371/journal.pone.0077673.
    [31]
    MartinPE, O'ShaughnessyEM, WrightCS, et al. The potential of human induced pluripotent stem cells for modelling diabetic wound healing in vitro[J]. Clin Sci (Lond), 2018,132(15):1629-1643. DOI: 10.1042/CS20171483.
    [32]
    WuR, DuD, BoY, et al. Hsp90α promotes the migration of iPSCs-derived keratinocyte to accelerate deep second-degree burn wound healing in mice[J]. Biochem Biophys Res Commun, 2019,520(1):145-151. DOI: 10.1016/j.bbrc.2019.09.120.
    [33]
    YanY, JiangJ, ZhangM, et al. Effect of iPSCs-derived keratinocytes on healing of full-thickness skin wounds in mice[J]. Exp Cell Res, 2019,385(1):111627. DOI: 10.1016/j.yexcr.2019.111627.
    [34]
    ShenYI, ChoH, PapaAE, et al. Engineered human vascularized constructs accelerate diabetic wound healing[J]. Biomaterials, 2016,102:107-119. DOI: 10.1016/j.biomaterials.2016.06.009.
    [35]
    AguiarC, TherrienJ, LemireP, et al. Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage[J]. Equine Vet J, 2016,48(3):338-345. DOI: 10.1111/evj.12438.
    [36]
    TapiaN, SchölerHR. Molecular obstacles to clinical translation of iPSCs[J]. Cell Stem Cell, 2016,19(3):298-309. DOI: 10.1016/j.stem.2016.06.017.
    [37]
    Álvaro-AfonsoFJ, Sanz-CorbalánI, Lázaro-MartínezJL, et al. Adipose-derived mesenchymal stem cells in the treatment of diabetic foot ulcers: a review of preclinical and clinical studies[J]. Angiology, 2020,71(9):853-863. DOI: 10.1177/0003319720939467.
    [38]
    SurowieckaA, StrużynaJ. Adipose-derived stem cells for facial rejuvenation[J]. J Pers Med, 2022,12(1):117. DOI: 10.3390/jpm12010117.
    [39]
    Abou EittaRS, IsmailAA, AbdelmaksoudRA, et al. Evaluation of autologous adipose-derived stem cells vs. fractional carbon dioxide laser in the treatment of post acne scars: a split-face study[J]. Int J Dermatol, 2019, 58(10): 1212-1222. DOI: 10.1111/ijd.14567.
    [40]
    IacomiDM, RoscaAM, TutuianuR, et al. Generation of an immortalized human adipose-derived mesenchymal stromal cell line suitable for wound healing therapy[J]. Int J Mol Sci, 2022,23 (16):8925. DOI: 10.3390/ijms23168925.
    [41]
    ZhangCP, FuXB. Therapeutic potential of stem cells in skin repair and regeneration[J]. Chin J Traumatol, 2008,11(4):209-221. DOI: 10.1016/s1008-1275(08)60045-0.
    [42]
    SchrederA, PierardGE, PaquetP, et al. Facing towards epidermal stem cells (Review)[J]. Int J Mol Med, 2010,26(2):171-174. DOI: 10.3892/ijmm_00000449.
    [43]
    CattaneoC, EnzoE, De RosaL, et al. Allele-specific CRISPR-Cas9 editing of dominant epidermolysis bullosa simplex in human epidermal stem cells[J]. Mol Ther, 2024,32(2):372-383. DOI: 10.1016/j.ymthe.2023.11.027.
    [44]
    YangGN, StrudwickXL, BonderC, et al. Effect of flightless I expression on epidermal stem cell niche during wound repair[J]. Adv Wound Care (New Rochelle), 2020,9(4):161-173. DOI: 10.1089/wound.2018.0884.
    [45]
    LimatA, MauriD, HunzikerT. Successful treatment of chronic leg ulcers with epidermal equivalents generated from cultured autologous outer root sheath cells[J]. J Invest Dermatol, 1996,107(1):128-135. DOI: 10.1111/1523-1747.ep12298415.
    [46]
    YangR, WangJ, ZhouZ, et al. Role of caveolin-1 in epidermal stem cells during burn wound healing in rats[J]. Dev Biol, 2019,445(2):271-279. DOI: 10.1016/j.ydbio.2018.11.015.
    [47]
    BabakhaniA, HashemiP, Mohajer AnsariJ, et al. In vitro differentiation of hair follicle stem cell into keratinocyte by simvastatin[J]. Iran Biomed J, 2019,23(6):404-411. DOI: 10.29252/ibj.23.6.404.
    [48]
    SamiecM, WiaterJ, WartalskiK, et al. The relative abundances of human leukocyte antigen-E, α-galactosidase a and α-gal antigenic determinants are biased by trichostatin a-dependent epigenetic transformation of triple-transgenic pig-derived dermal fibroblast cells[J]. Int J Mol Sci, 2022,23 (18):10296.DOI: 10.3390/ijms231810296.
    [49]
    HouP, LiY, ZhangX, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013,341(6146):651-654. DOI: 10.1126/science.1239278.
    [50]
    GuanJ, WangG, WangJ, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022,605(7909):325-331. DOI: 10.1038/s41586-022-04593-5.
    [51]
    BurmeisterDM, StoneR, WriceN, et al. Delivery of allogeneic adipose stem cells in polyethylene glycol-fibrin hydrogels as an adjunct to meshed autografts after sharp debridement of deep partial thickness burns[J]. Stem Cells Transl Med, 2018,7(4):360-372. DOI: 10.1002/sctm.17-0160.
    [52]
    ChenJ, LiuY, ZhangJ, et al. External application of human umbilical cord-derived mesenchymal stem cells in hyaluronic acid gel repairs foot wounds of types I and Ⅱ diabetic rats through paracrine action mode[J]. Stem Cells Transl Med, 2023,12(10):689-706. DOI: 10.1093/stcltm/szad050.
    [53]
    BaiH, Kyu-CheolN, WangZ, et al. Regulation of inflammatory microenvironment using a self-healing hydrogel loaded with BM-MSCs for advanced wound healing in rat diabetic foot ulcers[J]. J Tissue Eng, 2020,11:2041731420947242. DOI: 10.1177/2041731420947242.
    [54]
    BelloYM, FalabellaAF, EaglsteinWH. Tissue-engineered skin. Current status in wound healing [J]. Am J Clin Dermatol, 2001, 2(5): 305-313.
    [55]
    CrawfordL, WyattM, BryersJ, et al. Biocompatibility evolves: phenomenology to toxicology to regeneration[J]. Adv Healthc Mater, 2021,10(11):e2002153. DOI: 10.1002/adhm.202002153.
    [56]
    ZhangJ, WehrleE, RubertM, et al. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors[J]. Int J Mol Sci, 2021,22(8):3971. DOI: 10.3390/ijms22083971.
    [57]
    SawyerSW, TakedaK, AlayoubiA, et al. 3D bioprinting optimization of human mesenchymal stromal cell laden gelatin-alginate-collagen bioink[J]. Biomed Mater, 2022,18(1).DOI: 10.1088/1748-605X/aca3e7.
    [58]
    BaltazarT, JiangB, MoncayoA, et al. 3D bioprinting of an implantable xeno-free vascularized human skin graft[J]. Bioeng Transl Med, 2023,8(1):e10324. DOI: 10.1002/btm2.10324.
    [59]
    WuY, LiangT, HuY, et al. 3D bioprinting of integral ADSCs-NO hydrogel scaffolds to promote severe burn wound healing[J]. Regen Biomater, 2021,8(3):rbab014. DOI: 10.1093/rb/rbab014.
    [60]
    HaoL, TaoX, FengM, et al. Stepwise multi-cross-linking bioink for 3D embedded bioprinting to promote full-thickness wound healing[J]. ACS Appl Mater Interfaces, 2023,15(20):24034-24046. DOI: 10.1021/acsami.3c00688.
    [61]
    FerroniL, D'AmoraU, GardinC, et al. Stem cell-derived small extracellular vesicles embedded into methacrylated hyaluronic acid wound dressings accelerate wound repair in a pressure model of diabetic ulcer[J]. J Nanobiotechnology, 2023,21(1):469. DOI: 10.1186/s12951-023-02202-9.
    [62]
    LiM, SunL, LiuZ, et al. 3D bioprinting of heterogeneous tissue-engineered skin containing human dermal fibroblasts and keratinocytes[J]. Biomater Sci, 2023,11(7):2461-2477. DOI: 10.1039/d2bm02092k.
    [63]
    FuH, ZhangD, ZengJ, et al. Application of 3D-printed tissue-engineered skin substitute using innovative biomaterial loaded with human adipose-derived stem cells in wound healing[J]. Int J Bioprint, 2023,9(2):674. DOI: 10.18063/ijb.v9i2.674.
    [64]
    XueK, JiangY, ZhangX, et al. Hypoxic ADSCs-derived EVs promote the proliferation and chondrogenic differentiation of cartilage stem/progenitor cells[J]. Adipocyte, 2021,10(1):322-337. DOI: 10.1080/21623945.2021.1945210.
    [65]
    ZhangJ, ZhangJ, JiangX, et al. ASCs-EVs inhibit apoptosis and promote myocardial function in the infarcted heart via miR-221[J]. Discov Med, 2023,35(179):1077-1085. DOI: 10.24976/Discov.Med.202335179.104.
    [66]
    JinJ, ShiY, GongJ, et al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte[J]. Stem Cell Res Ther, 2019,10(1):95. DOI: 10.1186/s13287-019-1177-1.
    [67]
    DrommelschmidtK, SerdarM, BendixI, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury[J]. Brain Behav Immun, 2017,60:220-232. DOI: 10.1016/j.bbi.2016.11.011.
    [68]
    PatelNJ, AshrafA, ChungEJ. Extracellular vesicles as regulators of the extracellular matrix[J]. Bioengineering (Basel), 2023,10(2):136.DOI: 10.3390/bioengineering10020136.
    [69]
    WolfM, PoupardinRW, Ebner-PekingP, et al. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation[J]. J Extracell Vesicles, 2022,11(4):e12207. DOI: 10.1002/jev2.12207.
    [70]
    ZhangW, WangT, XueY, et al. Research progress of extracellular vesicles and exosomes derived from mesenchymal stem cells in the treatment of oxidative stress-related diseases[J]. Front Immunol, 2023,14:1238789. DOI: 10.3389/fimmu.2023.1238789.
    [71]
    ShiR, JinY, ZhaoS, et al. Hypoxic ADSC-derived exosomes enhance wound healing in diabetic mice via delivery of circ-Snhg11 and induction of M2-like macrophage polarization[J]. Biomed Pharmacother, 2022,153:113463. DOI: 10.1016/j.biopha.2022.113463.
    [72]
    曹涛, 郝彤, 肖丹, 等. 人脂肪干细胞外泌体对糖尿病周围神经病变的作用及其机制[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 240-248. DOI: 10.3760/cma.j.cn501225-20231207-00230.
    [73]
    XiangQ, XiaoJ, ZhangH, et al. Preparation and characterisation of bFGF-encapsulated liposomes and evaluation of wound-healing activities in the rat[J]. Burns, 2011,37(5):886-895. DOI: 10.1016/j.burns.2011.01.018.
    [74]
    WangC, WangM, XuT, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration[J]. Theranostics, 2019,9(1):65-76. DOI: 10.7150/thno.29766.
    [75]
    何佳, 王婧薷, 甘文军, 等. 单细胞RNA测序解析普通小鼠和糖尿病小鼠全层皮肤缺损创面中CD34 +细胞的类型与功能[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 230-239. DOI: 10.3760/cma.j.cn501225-20231130-00217.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (3344) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return