Ruan P,Sun SQ,Ge YH,et al.Research on the feasibility of dynamic contrast-enhanced magnetic resonance imaging in assessing the microcirculatory perfusion of skeletal muscle in rabbit limbs in the early stage after high-voltage electric burns[J].Chin J Burns Wounds,2025,41(2):163-170.DOI: 10.3760/cma.j.cn501225-20240517-00183.
Citation: Ruan P,Sun SQ,Ge YH,et al.Research on the feasibility of dynamic contrast-enhanced magnetic resonance imaging in assessing the microcirculatory perfusion of skeletal muscle in rabbit limbs in the early stage after high-voltage electric burns[J].Chin J Burns Wounds,2025,41(2):163-170.DOI: 10.3760/cma.j.cn501225-20240517-00183.

Research on the feasibility of dynamic contrast-enhanced magnetic resonance imaging in assessing the microcirculatory perfusion of skeletal muscle in rabbit limbs in the early stage after high-voltage electric burns

doi: 10.3760/cma.j.cn501225-20240517-00183
Funds:

Central Guidance for Local Science and Technology Development Program of Hubei Province Science and Technology Department 2022BGE264

Knowledge Innovation Special Project of Wuhan Science and Technology Bureau 2022020801020551

More Information
  •   Objective  To explore the feasibility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing the microcirculatory perfusion of skeletal muscle in rabbit limbs in the early stage after high-voltage electric burns.  Methods  This study was an experimental study. Thirty-two male big ear white rabbits aged 6-8 months were assigned into electric burn group of 20 rabbits with high-voltage electric burns in the right lower limb and control group of 12 rabbits with sham injury in the right lower limb using the random number table method. At 0.5, 24.0, 48.0, and 72.0 h post injury, the lower limbs of rabbits in the two groups underwent axial fast spin echo T1-weighted imaging, fast spin echo T2-weighted imaging, and DCE-MRI examination. A reference region-based hemodynamic model was applied to obtain the blood perfusion parameters of skeletal muscle in the injured limbs, including the volume transfer constant Ktrans value and rate constant Kep value. The skeletal muscle tissue from the electric burn group of rabbits at 0.5, 24.0, 48.0, and 72.0 h post injury and the control group of rabbits at 0.5 h post injury was harvested for immunohistochemical staining to observe the microvascular changes and calculate the microvascular density (MVD). The correlation between the Ktrans and Kep values and the MVD of skeletal muscle tissue in electric burn group of rabbits at 0.5-72.0 h post injury was analyzed. The number of samples was 5 in the electric burn group, and the number of samples was 3 in the control burn group.  Results  From 0.5-72.0 h post injury, the Ktrans and Kep values in skeletal muscle tissue of electric burn group of rabbits exhibited the trends of increase first and decrease then, both of which reached peak values at 24.0 h post injury. The Ktrans values at 0.5, 24.0, 48.0, and 72.0 h post injury (with t values of -15.77, -14.91, -40.35, and -40.25, respectively, P<0.05) and the Kep values at 0.5, 24.0, and 48.0 h post injury (with t values of -5.39, -6.82, and -6.83, respectively, P<0.05) in skeletal muscle tissue in electric burn group of rabbits were significantly higher than those in control group. The MVD in skeletal muscle tissue in control group of rabbits at 0.5 h post injury and in electric burn group of rabbits at 0.5, 24.0, 48.0, and 72.0 h post injury was (24.7±3.5), (21.8±2.2), (40.8±9.1), (16.4±2.4), and (9.8±0.8) per mm², respectively. The MVD in skeletal muscle tissue in electric burn group of rabbits at 24.0 h post injury was significantly higher than that in control group at 0.5 h post injury (t=2.89, P<0.05), and the MVD in skeletal muscle tissue at 48.0 and 72.0 h post injury was significantly lower than that in control group at 0.5 h post injury (with t values of 4.01 and 9.52, respectively, P<0.05). The Ktrans and Kep values of skeletal muscle tissue in rabbits in electric burn group were significantly positively correlated with microvascular density at 0.5 to 72.0 h post injury (with both r values of 0.95, P<0.05).  Conclusions  The quantitative perfusion parameters Ktrans and Kep values of DCE-MRI can effectively reflect the microcirculatory perfusion changes of skeletal muscle in rabbit limbs in the early stage after high-voltage electric burns.

     

  • [1]
    张庆富,郝嘉文.高压电烧伤进行性损伤的机制及防治策略[J].中华烧伤与创面修复杂志,2023,39(8):718-723.DOI: 10.3760/cma.j.cn501225-20230331-00107.
    [2]
    ParkKH,ParkWJ,KimMK,et al.Alterations in arterial function after high-voltage electrical injury[J].Crit Care,2012,16(1):R25.DOI: 10.1186/cc11190.
    [3]
    ZhouHM,XuSJ,WangL,et al.Influences of high-voltage electrical burns on the pulmonary microcirculation in rabbits[J].Clin Hemorheol Microcirc,2016,62(3):193-203.DOI: 10.3233/CH-141921.
    [4]
    LeeDH,DesaiMJ,GaugerEM.Electrical injuries of the hand and upper extremity[J].J Am Acad Orthop Surg,2019,27(1):e1-e8.DOI: 10.5435/JAAOS-D-17-00833.
    [5]
    PedrazziN,KleinH,GentzschT,et al.Predictors for limb amputation and reconstructive management in electrical injuries[J].Burns,2023,49(5):1103-1112.DOI: 10.1016/j.burns.2022.08.007.
    [6]
    张伟,张卫东,陈斓,等.游离组织瓣修复巨大毁损性烧伤创面的策略及临床效果[J].中华烧伤与创面修复杂志,2024,40(9):818-827.DOI: 10.3760/cma.j.cn501225-20240609-00218.
    [7]
    李利根,柴家科.肢体高压电烧伤软组织及血管损伤的影像学判断及临床意义[J].中华烧伤杂志,2020,36(11):1009-1012.DOI: 10.3760/cma.j.cn501120-20190904-00371.
    [8]
    LiX,HuangW,HolmesJH.Dynamic contrast-enhanced (DCE) MRI[J].Magn Reson Imaging Clin N Am,2024,32(1):47-61.DOI: 10.1016/j.mric.2023.09.001.
    [9]
    ZhangJL,LayecG,HanrahanC,et al.Exercise-induced calf muscle hyperemia: quantitative mapping with low-dose dynamic contrast enhanced magnetic resonance imaging[J].Am J Physiol Heart Circ Physiol,2019,316(1):H201-H211.DOI: 10.1152/ajpheart.00537.2018.
    [10]
    GaneshT,ZakherE,EstradaM,et al.Assessment of microvascular dysfunction in acute limb ischemia-reperfusion injury[J].J Magn Reson Imaging,2019,49(4):1174-1185.DOI: 10.1002/jmri.26308.
    [11]
    YangL,LiD,YanY,et al.Microvascular permeability and texture analysis of bone marrow in diabetic rabbits with critical limb ischemia based on dynamic contrast-enhanced magnetic resonance imaging[J].J Diabetes Investig,2024,15(5):584-593.DOI: 10.1111/jdi.14145.
    [12]
    QiL,XuL,WangWT,et al.Dynamic contrast-enhanced magnetic resonance imaging in denervated skeletal muscle: experimental study in rabbits[J].PLoS One,2019,14(4):e0215069.DOI: 10.1371/journal.pone.0215069.
    [13]
    张伟,陈斓,杨飞,等. 上肢毁损性电烧伤的救治方法及其临床疗效[J]. 中华烧伤与创面修复杂志,2023,39(8):731-737.DOI: 10.3760/cma.j.cn501225-20230530-00188.
    [14]
    杨智斌,牛建栋,马勇,等.CT血管造影及三维重建在组织瓣修复颈肩、腋窝及上臂高压电烧伤创面中的临床应用[J].中华烧伤杂志,2018,34(12):874-880.DOI: 10.3760/cma.j.issn.1009-2587.2018.12.011.
    [15]
    黎淑娟,王正磊,朱维平,等.四肢高压电烧伤早期磁共振成像特点的临床研究[J].中华烧伤杂志,2017,33(12):750-756.DOI: 10.3760/cma.j.issn.1009-2587.2017.12.006.
    [16]
    王巍,李振彩,姚文莲,等. 高压电击伤动物肌肉组织超声评估[J]. 临床军医杂志,2019,47(12):1310-1312,1315. DOI: 10.16680/j.1671-3826.2019.12.10.
    [17]
    HottaK,BehnkeBJ,MasamotoK,et al.Microvascular permeability of skeletal muscle after eccentric contraction-induced muscle injury: in vivo imaging using two-photon laser scanning microscopy[J].J Appl Physiol (1985),2018,125(2):369-380.DOI: 10.1152/japplphysiol.00046.2018.
    [18]
    HottaK,ShimotsuR,BehnkeBJ,et al.Effect of diabetes on microvascular morphology and permeability of rat skeletal muscle: in vivo imaging using two-photon laser scanning microscopy[J].J Appl Physiol (1985),2024,137(4):963-974.DOI: 10.1152/japplphysiol.00222.2024.
    [19]
    NguyenT,DavidsonBP.Contrast enhanced ultrasound perfusion imaging in skeletal muscle[J].J Cardiovasc Imaging,2019,27(3):163-177.DOI: 10.4250/jcvi.2019.27.e31.
    [20]
    ChangKV,LewHL,WangTG,et al.Use of contrast-enhanced ultrasonography in musculoskeletal medicine[J].Am J Phys Med Rehabil,2012,91(5):449-457.DOI: 10.1097/PHM.0b013e31823caaa3.
    [21]
    ChenSY,WangYW,ChenWS,et al.Update of contrast-enhanced ultrasound in musculoskeletal medicine: clinical perspectives-a review[J].J Med Ultrasound,2023,31(2):92-100.DOI: 10.4103/jmu.jmu_94_22.
    [22]
    ChouTH,NabaviniaM,TramNK,et al.Quantification of skeletal muscle perfusion in peripheral artery disease using 18F-sodium fluoride positron emission tomography imaging[J].J Am Heart Assoc,2024,13(4):e031823.DOI: 10.1161/JAHA.123.031823.
    [23]
    KnuutiJ,TuiskuJ,KärpijokiH,et al.Quantitative perfusion imaging with total-body PET[J].J Nucl Med,2023,64(Suppl 2):S11-19.DOI: 10.2967/jnumed.122.264870.
    [24]
    GuF,WuQ.Quantitation of dynamic total-body PET imaging: recent developments and future perspectives[J].Eur J Nucl Med Mol Imaging,2023,50(12):3538-3557.DOI: 10.1007/s00259-023-06299-w.
    [25]
    GriffithJF,YipSWY,van der HeijdenRA,et al.Perfusion imaging of the musculoskeletal system[J].Magn Reson Imaging Clin N Am,2024,32(1):181-206.DOI: 10.1016/j.mric.2023.07.004.
    [26]
    LuckJC,SicaCT,BlahaC,et al.Agreement between multiparametric MRI (PIVOT), Doppler ultrasound, and near-infrared spectroscopy-based assessments of skeletal muscle oxygenation and perfusion[J].Magn Reson Imaging,2023,96:27-37.DOI: 10.1016/j.mri.2022.11.003.
    [27]
    LiuB,HuL,WangL,et al.Evaluation of microvascular permeability of skeletal muscle and texture analysis based on DCE-MRI in alloxan-induced diabetic rabbits[J].Eur Radiol,2021,31(8):5669-5679.DOI: 10.1007/s00330-021-07705-3.
    [28]
    de MelloR,MaY,JiY,et al.Quantitative MRI musculoskeletal techniques: an update[J].AJR Am J Roentgenol,2019,213(3):524-533.DOI: 10.2214/AJR.19.21143.
    [29]
    KhalifaF,SolimanA,El-BazA,et al.Models and methods for analyzing DCE-MRI: a review[J].Med Phys,2014,41(12):124301.DOI: 10.1118/1.4898202.
    [30]
    张庆富.高压电烧伤后微循环障碍及其诊治研究[J].中华烧伤与创面修复杂志,2024,40(8):713-718.DOI: 10.3760/cma.j.cn501225-20240523-00194.
    [31]
    张庆富,许顺江,梁利民,等.高压电烧伤对大鼠小肠浆膜表面微循环灌流量的影响及己酮可可碱的干预作用[J].中华烧伤杂志,2017,33(3):166-170.DOI: 10.3760/cma.j.issn.1009-2587.2017.03.008.
    [32]
    SchweizerR,PedrazziN,KleinHJ,et al.Risk factors for mortality and prolonged hospitalization in electric burn injuries[J].J Burn Care Res,2021,42(3):505-512.DOI: 10.1093/jbcr/iraa192.
    [33]
    李全,巴特,曹胜军,等.血栓弹力图联合常规凝血检测对电烧伤患者创伤性凝血病的早期诊断价值[J].中华烧伤与创面修复杂志,2024,40(8):740-745.DOI: 10.3760/cma.j.cn501225-20240416-00135.
    [34]
    ChiY,LiuX,ChaiJ.A narrative review of changes in microvascular permeability after burn[J].Ann Transl Med,2021,9(8):719.DOI: 10.21037/atm-21-1267.
    [35]
    张丕红,黄晓元,黄跃生.深度电烧伤创面早期修复专家共识(2020版)[J].中华创伤杂志,2020,36(10):865-871.DOI: 10.3760/cma.j.cn501098-20200706-00488.
    [36]
    HaugeA,GaustadJV,HuangR,et al.DCE-MRI and quantitative histology reveal enhanced vessel maturation but impaired perfusion and increased hypoxia in bevacizumab-treated cervical carcinoma[J].Int J Radiat Oncol Biol Phys,2019,104(3):666-676.DOI: 10.1016/j.ijrobp.2019.03.002.
    [37]
    BayerML,Hoegberget-KaliszM,JensenMH,et al.Role of tissue perfusion, muscle strength recovery, and pain in rehabilitation after acute muscle strain injury: a randomized controlled trial comparing early and delayed rehabilitation[J].Scand J Med Sci Sports,2018,28(12):2579-2591.DOI: 10.1111/sms.13269.
    [38]
    MooshageCM,TsilingirisD,SchimpfleL,et al.Insulin resistance is associated with reduced capillary permeability of thigh muscles in patients with type 2 diabetes[J].J Clin Endocrinol Metab,2023,109(1):e137-e144.DOI: 10.1210/clinem/dgad481.
    [39]
    ChaiJk,LiLG,GaoQW,et al.Establishment of soft-tissue-injury model of high-voltage electrical burn and observation of its pathological changes[J].Burns,2009,35(8):1158-1164.DOI: 10.1016/j.burns.2009.02.010.
    [40]
    张庆富,周慧敏,王车江,等. 高压电烧伤对兔心脏微循环的影响[J]. 中华烧伤杂志,2012,28(3):173-177.DOI: 10.3760/cma.j.issn.1009-2587.2012.03.004.
    [41]
    谭红,张伟,谢卫国,等. 大鼠肢体电烧伤模型的病理学变化[J]. 中华实验外科杂志,2007,24(6):763.DOI: 10.3760/j.issn:1001-9030.2007.06.050.
  • 阮鹏-视频.mp4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (70) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return