Citation: | Gou WM,Yang P,Lu YF,et al.Effect and mechanism of Andrias davidianus skin mucopolysaccharides on full-thickness skin defect wound healing in diabetic mice[J].Chin J Burns Wounds,2025,41(2):127-136.DOI: 10.3760/cma.j.cn501225-20240725-00280. |
[1] |
TottoliEM, DoratiR, GentaI, et al. Skin wound healing process and new emerging technologies for skin wound care and regeneration[J]. Pharmaceutics, 2020,12(8):735.DOI: 10.3390/pharmaceutics12080735.
|
[2] |
林崴仪, 戈成旺, 唐枭伟, 等. 阿克曼嗜黏液菌外膜蛋白1100促进糖尿病大鼠创面愈合[J].组织工程与重建外科杂志,2023,19(4):358-365. DOI: 10.3969/j.issn.1673-0364.2023.04.005.
|
[3] |
刘陈肖笑, 简扬, 张演基, 等. 基于抗生素骨水泥的糖尿病足溃疡治疗策略研究进展[J].组织工程与重建外科杂志,2023,19(6):591-596. DOI: 10.3969/j.issn.1673-0364.2023.06.014.
|
[4] |
IshiharaJ, IshiharaA, StarkeRD, et al. The heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healing[J]. Blood, 2019,133(24):2559-2569. DOI: 10.1182/blood.2019000510.
|
[5] |
DaiH, FanQ, WangC. Recent applications of immunomodulatory biomaterials for disease immuno-therapy[J]. Exploration (Beijing), 2022,2(6):20210157. DOI: 10.1002/EXP.20210157.
|
[6] |
易佳荣, 李泽楠, 谢慧清, 等. 人脐静脉内皮细胞外泌体对糖尿病兔创面愈合的作用及其机制[J]. 中华烧伤与创面修复杂志, 2022, 38(11):1023-1033. DOI: 10.3760/cma.j.cn501225-20220622-00254.
|
[7] |
QueY, ShiJ, ZhangZ, et al. Ion cocktail therapy for myocardial infarction by synergistic regulation of both structural and electrical remodeling[J]. Exploration (Beijing), 2024,4(3):20230067. DOI: 10.1002/EXP.20230067.
|
[8] |
WuX, HeW, MuX, et al. Macrophage polarization in diabetic wound healing[J/OL]. Burns Trauma, 2022,10:tkac051[2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/36601058/. DOI: 10.1093/burnst/tkac051.
|
[9] |
LiS, YangP, DingX, et al. Puerarin improves diabetic wound healing via regulation of macrophage M2 polarization phenotype[J/OL]. Burns Trauma, 2022,10:tkac046[2024-07-25].https://pubmed.ncbi.nlm.nih.gov/36568527/. DOI: 10.1093/burnst/tkac046.
|
[10] |
TokatlianT, CamC, SeguraT. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model[J]. Adv Healthc Mater, 2015,4(7):1084-1091. DOI: 10.1002/adhm.201400783.
|
[11] |
HeH, XiaDL, ChenYP, et al. Evaluation of a two-stage antibacterial hydrogel dressing for healing in an infected diabetic wound[J]. J Biomed Mater Res B Appl Biomater, 2017,105(7):1808-1817. DOI: 10.1002/jbm.b.33543.
|
[12] |
CuiW, GongC, LiuY, et al. Composite antibacterial hydrogels based on two natural products pullulan and ε-poly-l-lysine for burn wound healing[J]. Int J Biol Macromol, 2024,277(Pt 2):134208. DOI: 10.1016/j.ijbiomac.2024.134208.
|
[13] |
LuYF, LiHS, WangJ, et al. Engineering bacteria-activated multifunctionalized hydrogel for promoting diabetic wound healing[J]. Adv Funct Mater, 2021, 31(48):2105749. DOI: 10.1002/adfm.202105749.
|
[14] |
YuQ, SunH, YueZ, et al. Zwitterionic polysaccharide-based hydrogel dressing as a stem cell carrier to accelerate burn wound healing[J]. Adv Healthc Mater, 2023,12(7):e2202309. DOI: 10.1002/adhm.202202309.
|
[15] |
YangP, LuY, GouW, et al. Glycosaminoglycans' ability to promote wound healing: from native living macromolecules to artificial biomaterials[J]. Adv Sci (Weinh), 2024,11(9):e2305918. DOI: 10.1002/advs.202305918.
|
[16] |
Soriano-RuizJL, Gálvez-MartínP, López-RuizE, et al. Design and evaluation of mesenchymal stem cells seeded chitosan/glycosaminoglycans quaternary hydrogel scaffolds for wound healing applications[J]. Int J Pharm, 2019,570:118632. DOI: 10.1016/j.ijpharm.2019.118632.
|
[17] |
DengJ, TangYY, ZhangQ, et al. A bioinspired medical adhesive derived from skinsecretion of andrias davidianus for wound healing[J]. Adv Funct Mater, 2019, 29(31):1809110. DOI: 10.1002/adfm.201809110.
|
[18] |
NaghdiS, RezaeiM, TabarsaM, AbdollahiM. Extraction of sulfated polysaccharide from Skipjack tuna viscera using alcalase enzyme and rainbow trout visceral semi-purified alkaline proteases[J]. Sustain Chem Pharm, 2023, 32. DOI: 10.1016/j.scp.2023.101033.
|
[19] |
AgbenorheviJK, KontogiorgosV. Polysaccharide determination in protein/polysaccharide mixtures for phase-diagram construction[J]. Carbohyd Polym, 2010, 81(4):849-854. DOI: 10.1016/j.carbpol.2010.03.056.
|
[20] |
FengY, LiQ, WuD, et al. A macrophage-activating, injectable hydrogel to sequester endogenous growth factors for in situ angiogenesis[J]. Biomaterials, 2017,134:128-142. DOI: 10.1016/j.biomaterials.2017.04.042.
|
[21] |
ZhouZ, DengT, TaoM, et al. Snail-inspired AFG/GelMA hydrogel accelerates diabetic wound healing via inflammatory cytokines suppression and macrophage polarization[J]. Biomaterials, 2023,299:122141. DOI: 10.1016/j.biomaterials.2023.122141.
|
[22] |
RenY, AierkenA, ZhaoL, et al. hUC-MSCs lyophilized powder loaded polysaccharide ulvan driven functional hydrogel for chronic diabetic wound healing[J]. Carbohydr Polym, 2022,288:119404. DOI: 10.1016/j.carbpol.2022.119404.
|
[23] |
WuH, LiF, ShaoW, et al. Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel[J]. ACS Cent Sci, 2019,5(3):477-485. DOI: 10.1021/acscentsci.8b00850.
|
[24] |
BaekSO, JangU, ShinJ, et al. Shape memory alloy as an internal splint in a rat model of excisional wound healing[J]. Biomed Mater, 2021,16(2):025002. DOI: 10.1088/1748-605X/abda89.
|
[25] |
ShaoZ, YinT, JiangJ, et al. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing[J]. Bioact Mater, 2023,20:561-573. DOI: 10.1016/j.bioactmat.2022.06.018.
|
[26] |
LiuJ, QuM, WangC, et al. A dual-cross-linked hydrogel patch for promoting diabetic wound healing[J]. Small, 2022,18(17):e2106172. DOI: 10.1002/smll.202106172.
|
[27] |
ArmstrongDG, BoultonA, BusSA. Diabetic foot ulcers and their recurrence[J]. N Engl J Med, 2017,376(24):2367-2375. DOI: 10.1056/NEJMra1615439.
|
[28] |
LiuE, GaoH, ZhaoY, et al. The potential application of natural products in cutaneous wound healing: a review of preclinical evidence[J]. Front Pharmacol, 2022,13:900439. DOI: 10.3389/fphar.2022.900439.
|
[29] |
彭源, 卢毅飞, 邓君, 等. 氧化铜纳米酶对糖尿病小鼠全层皮肤缺损创面修复的作用及其机制[J]. 中华烧伤杂志, 2020, 36(12):1139-1148. DOI: 10.3760/cma.j.cn501120-20200929-00426.
|
[30] |
DuH, LiS, LuJ, et al. Single-cell RNA-seq and bulk-seq identify RAB17 as a potential regulator of angiogenesis by human dermal microvascular endothelial cells in diabetic foot ulcers[J/OL]. Burns Trauma, 2023,11:tkad020[2024-07-25].https://pubmed.ncbi.nlm.nih.gov/37605780/. DOI: 10.1093/burnst/tkad020.
|
[31] |
YueX, ZhaoS, QiuM, et al. Physical dual-network photothermal antibacterial multifunctional hydrogel adhesive for wound healing of drug-resistant bacterial infections synthesized from natural polysaccharides[J]. Carbohydr Polym, 2023,312:120831. DOI: 10.1016/j.carbpol.2023.120831.
|
[32] |
ShepherdJ, SarkerP, RimmerS, et al. Hyperbranched poly(NIPAM) polymers modified with antibiotics for the reduction of bacterial burden in infected human tissue engineered skin[J]. Biomaterials, 2011,32(1):258-267. DOI: 10.1016/j.biomaterials.2010.08.084.
|
[33] |
ZhangY, XuY, KongH, et al. Microneedle system for tissue engineering and regenerative medicine[J]. Exploration (Beijing), 2023,3(1):20210170. DOI: 10.1002/EXP.20210170.
|
[34] |
ForbesSJ, RosenthalN. Preparing the ground for tissue regeneration: from mechanism to therapy[J]. Nat Med, 2014,20(8):857-869. DOI: 10.1038/nm.3653.
|
[35] |
ShangS, ZhuangK, ChenJ, et al. A bioactive composite hydrogel dressing that promotes healing of both acute and chronic diabetic skin wounds[J]. Bioact Mater, 2024,34:298-310. DOI: 10.1016/j.bioactmat.2023.12.026.
|
[36] |
MartinKE, GarcíaAJ. Macrophage phenotypes in tissue repair and the foreign body response: implications for biomaterial-based regenerative medicine strategies[J]. Acta Biomater, 2021,133:4-16. DOI: 10.1016/j.actbio.2021.03.038.
|
[37] |
MantovaniA, BiswasSK, GaldieroMR, et al. Macrophage plasticity and polarization in tissue repair and remodelling[J]. J Pathol, 2013,229(2):176-185. DOI: 10.1002/path.4133.
|
[38] |
ZhangX, SoontornworajitB, ZhangZ, et al. Enhanced loading and controlled release of antibiotics using nucleic acids as an antibiotic-binding effector in hydrogels[J]. Biomacromolecules, 2012,13(7):2202-2210. DOI: 10.1021/bm3006227.
|
[39] |
卢毅飞, 邓君, 王竞, 等. 乳酸乳球菌温敏水凝胶对糖尿病小鼠全层皮肤缺损创面愈合的影响及其机制[J]. 中华烧伤杂志, 2020, 36(12):1117-1129. DOI: 10.3760/cma.j.cn501120-20201004-00427.
|
[40] |
DingX, YangC, LiY, et al. Reshaped commensal wound microbiome via topical application of Calvatia gigantea extract contributes to faster diabetic wound healing[J/OL]. Burns Trauma, 2024,12:tkae037[2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/39224840/. DOI: 10.1093/burnst/tkae037.
|
![]() |
![]() |