Wang XY,Hu YJ,Wang XC,et al.Targeted energy metabolomics study on wound tissue of diabetic rats[J].Chin J Burns Wounds,2025,41(2):137-144.DOI: 10.3760/cma.j.cn501225-20241014-00385.
Citation: Wang XY,Hu YJ,Wang XC,et al.Targeted energy metabolomics study on wound tissue of diabetic rats[J].Chin J Burns Wounds,2025,41(2):137-144.DOI: 10.3760/cma.j.cn501225-20241014-00385.

Targeted energy metabolomics study on wound tissue of diabetic rats

doi: 10.3760/cma.j.cn501225-20241014-00385
Funds:

General Program of National Natural Science Foundation of China 81873934

The Youth Science Fund Project of National Natural Science Foundation of China 82202454

Growth Factor Rejuvenation Plan of Wang Zhengguo Foundation for Traumatic Medicine SZYZ-TR-09

Science and Technology Development Project of Shandong Province of China 2015GSF118041

The Youth Fund Project of Natural Science Foundation of Shandong Province of China ZR2020QH168

Jinan Science and Technology Plan 202225065

More Information
  •   Objective  To explore the change of energy metabolism in wound tissue of diabetic rats.  Methods  This study was an experimental study. Six 8-week-old male Sprague-Dawley rats were divided into diabetic group inflicted with a diabetic full-thickness skin defect wound and control group only inflicted with a full-thickness skin defect wound according to the random number table method, with 3 rats in each group. The wound healing rates of rats in the two groups were calculated at 14 d after operation. The wound tissue of two groups of rats was collected at 14 d after operation, the targeted energy metabolomics detection was carried out by chromatography-mass spectrometry analysis, and the differential energy metabolites in the wound tissue were screened with significant change in the expression between the two groups of rats. The Kyoto encyclopedia of genes and genomes enrichment analysis was performed on the differential energy metabolites.  Results  At 14 d after operation, the wound healing rate of rats in diabetic group was (68.3±2.8)%, which was significantly lower than (98.1±1.2)% in control group (t=16.92, P<0.05). At 14 d after operation, compared with those in control group, the expressions of cis-aconitic acid, nicotinamide adenine dinucleotide phosphate, and 5'-guanosine diphosphate were significantly increased in wound tissue of rats in diabetic group (with t values of 4.74, 3.09, and 3.99, respectively, P<0.05), the expressions of L-malic acid and lactic acid were significantly decreased (with t values of 3.45 and 12.20, respectively, P<0.05), and there were no statistically significant differences in the expression levels of the other 21 energy metabolites in wound tissue of rats in the two groups (P>0.05). The five differential energy metabolites were enriched mainly in the glucagon, Rap1, Ras, hypoxia-inducible factor 1 signaling pathways as well as the tricarboxylic acid cycle, pyruvate metabolism, mitochondrial autophagy,and endocytosis pathways.  Conclusions  The expressions of lactic acid and L-malic acid in wound tissue of diabetic rats decreased, while the expressions of cis-aconitic acid, nicotinamide adenine dinucleotide phosphate, and 5'-guanosine diphosphate increased. The differential energy metabolites were mainly enriched in oxidative stress, energy regulation, inflammatory reaction, and other related signaling pathways or pathways.

     

  • [1]
    施芳婷,沈佳琪,仵敏娟.糖尿病难愈性创面的发病机制研究进展[J].生命科学,2024,36(4):509-516.DOI: 10.13376/j.cbls/2024054.
    [2]
    JinQ,MaR.Metabolomics in diabetes and diabetic complications: insights from epidemiological studies[J].Cells,2021,10(11):2832.DOI: 10.3390/cells10112832.
    [3]
    韩燕菲,李林东,王友,等.纳米氧化铈促进糖尿病大鼠创面愈合机制的代谢组学研究[J].中华糖尿病杂志,2019,11(2):120-125.DOI: 10.3760/cma.j.issn.1674-5809.2019.02.007.
    [4]
    王齐,朱冠娅,谢挺,等.ATP代谢及嘌呤信号受体在糖尿病创面愈合炎症反应阶段的变化[J].上海交通大学学报(医学版),2020,40(1):10-17.DOI: 10.3969/j.issn.1674-8115.2020.01.002.
    [5]
    葛奎,牛轶雯,谢挺,等.糖基化终末产物对糖尿病大鼠烧伤创面愈合的影响[J].中华烧伤杂志,2009,25(6):433-436.DOI: 10.3760/cma.j.issn.1009-2587.2009.06.012.
    [6]
    ZhangJ,YangP,LiuD,et al.Inhibiting hyper-O-GlcNAcylation of c-Myc accelerate diabetic wound healing by alleviating keratinocyte dysfunction[J/OL].Burns Trauma,2021,9:tkab031[2024-10-14].https://pubmed.ncbi.nlm.nih.gov/34646892/.DOI: 10.1093/burnst/tkab031.
    [7]
    Cadena SandovalM, HaeuslerRA. Bile acid metabolism in type 2 diabetes mellitus[J/OL]. Nat Rev Endocrinol, 2025(2025-01-06)[2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/39757322/. DOI: 10.1038/s41574-024-01067-8. [published online ahead of print].
    [8]
    WangZ,ZhaoF,XuC,et al.Metabolic reprogramming in skin wound healing[J/OL].Burns Trauma,2024,12:tkad047[2024-10-14]. https://pubmed.ncbi.nlm.nih.gov/38179472/. DOI: 10.1093/burnst/tkad047.
    [9]
    GuptaA,RaghubirR.Energy metabolism in the granulation tissue of diabetic rats during cutaneous wound healing[J].Mol Cell Biochem,2005,270(1/2):71-77.DOI: 10.1007/s11010-005-5258-3.
    [10]
    PiraniH,SoltanyA,Hossein RezaeiM,et al.Lactate-induced autophagy activation: unraveling the therapeutic impact of high-intensity interval training on insulin resistance in type 2 diabetic rats[J].Sci Rep,2024,14(1):1108.DOI: 10.1038/s41598-023-50589-0.
    [11]
    XuH,WangY,KwonH,et al.Glucagon changes substrate preference in gluconeogenesis[J].J Biol Chem,2022,298(12):102708.DOI: 10.1016/j.jbc.2022.102708.
    [12]
    LiuH,PanM,LiuM,et al.Lactate: a rising star in tumors and inflammation[J].Front Immunol,2024,15:1496390.DOI: 10.3389/fimmu.2024.1496390.
    [13]
    SemenzaGL. Hpoxia-inducible factors in physiology and medicine[J].Cell,2012,148(3):399-408. DOI: 10.1016/i.cell.2012.01.021.
    [14]
    KamarajM,MoghimiN,McCarthyA,et al.Granular porous nanofibrous microspheres enhance cellular infiltration for diabetic wound healing[J].ACS Nano,2024,18(41):28335-28348.DOI: 10.1021/acsnano.4c10044.
    [15]
    GouldL, MahmoudiM. Analysis of biogenic amines and small molecule metabolites in human diabetic wound ulcer exudate[J]. ACS Pharmacol Transl Sci, 2024,7(9):2894-2899. DOI: 10.1021/acsptsci.4c00418.
    [16]
    LöfflerM,ZiekerD,WeinreichJ,et al.Wound fluid lactate concentration: a helpful marker for diagnosing soft-tissue infection in diabetic foot ulcers? Preliminary findings[J].Diabet Med,2011,28(2):175-178.DOI: 10.1111/j.1464-5491.2010.03123.x.
    [17]
    ChiZ,WangZP,WangGY,et al.Microbial biosynthesis and secretion of l-malic acid and its applications[J].Crit Rev Biotechnol,2016,36(1):99-107.DOI: 10.3109/07388551.2014.924474.
    [18]
    WuM,ZhaoY,TaoM,et al.Malate-based biodegradable scaffolds activate cellular energetic metabolism for accelerated wound healing[J].ACS Appl Mater Interfaces,2023,15(44):50836-50853.DOI: 10.1021/acsami.3c09394.
    [19]
    Bobyleva-GuarrieroV,WehbieRS,LardyHA.The role of malate in hormone-induced enhancement of mitochondrial respiration[J].Arch Biochem Biophys,1986,245(2):477-482.DOI: 10.1016/0003-9861(86)90240-7.
    [20]
    YousefiM, GhafarifarsaniH, RaissyM, et al. Effects of dietary malic acid supplementation on growth performance, antioxidant and immunological parameters, and intestinal gene expressions in rainbow trout, Oncorhynchus mykiss[J]. Aquaculture, 2023,563:738864.DOI: 10.1016/j.aquaculture.2022.738864.
    [21]
    Gerez de BurgosNM,GallinaF,BurgosC,et al.Effect of L-malate on pyruvate dehydrogenase activity of spermatozoa[J].Arch Biochem Biophys,1994,308(2):520-524.DOI: 10.1006/abbi.1994.1073.
    [22]
    ZhangY,SmallboneLA,diCenzoGC,et al.Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti[J].BMC Microbiol,2016,16(1):163.DOI: 10.1186/s12866-016-0780-x.
    [23]
    WangP,LuS,CaoX,et al.Physiological and transcriptome analyses of the effects of excessive water deficit on malic acid accumulation in apple[J].Tree Physiol,2023,43(5):851-866.DOI: 10.1093/treephys/tpac149.
    [24]
    XiaH,TangH,WangF,et al.An untargeted metabolomics approach reveals further insights of Lycium barbarum polysaccharides in high fat diet and streptozotocin-induced diabetic rats[J].Food Res Int,2019,116:20-29.DOI: 10.1016/j.foodres.2018.12.043.
    [25]
    RojasDR,KunerR,AgarwalN.Metabolomic signature of type 1 diabetes-induced sensory loss and nerve damage in diabetic neuropathy[J].J Mol Med (Berl),2019,97(6):845-854.DOI: 10.1007/s00109-019-01781-1.
    [26]
    WuXY,LiF,XuWD,et al.Anti-hyperglycemic activity of chromium(III) malate complex in alloxan-induced diabetic rats[J].Biol Trace Elem Res,2011,143(2):1031-1043.DOI: 10.1007/s12011-010-8916-6.
    [27]
    O'NeillLAJ,ArtyomovMN.Itaconate: the poster child of metabolic reprogramming in macrophage function[J].Nat Rev Immunol,2019,19(5):273-281.DOI: 10.1038/s41577-019-0128-5.
    [28]
    徐俊,韩晓翠,何璐,等.糖尿病足患者创面中耐碳青霉烯类鲍曼不动杆菌的生物膜基因和群体感应基因分析[J].中华烧伤与创面修复杂志,2024,40(12):1166-1175.DOI: 10.3760/cma.j.cn501225-20240715-00269.
    [29]
    MichelucciA,CordesT,GhelfiJ,et al.Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production[J].Proc Natl Acad Sci U S A,2013,110(19):7820-7825.DOI: 10.1073/pnas.1218599110.
    [30]
    NaujoksJ,TabelingC,DillBD,et al.IFNs modify the proteome of legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid[J].PLoS Pathog,2016,12(2):e1005408.DOI: 10.1371/journal.ppat.1005408.
    [31]
    ZhangW,YangX,HuangX,et al.Bioinspired nanovesicles released from injectable hydrogels facilitate diabetic wound healing by regulating macrophage polarization and endothelial cell dysfunction[J].J Nanobiotechnology,2023,21(1):358.DOI: 10.1186/s12951-023-02119-3.
    [32]
    ZhaoR,XuL,ChenJ,et al.Itaconate induces tolerance of Staphylococcus aureus to aminoglycoside antibiotics[J].Front Microbiol,2024,15:1450085.DOI: 10.3389/fmicb.2024.1450085.
    [33]
    HammererF,ChangJH,DuncanD,et al.Small molecule restores itaconate sensitivity in salmonella enterica: a potential new approach to treating bacterial infections[J].Chembiochem,2016,17(16):1513-1517.DOI: 10.1002/cbic.201600078.
    [34]
    TanEHN,TangBL.Rab7a and mitophagosome formation[J].Cells,2019,8(3):224.DOI: 10.3390/cells8030224.
    [35]
    SatohT.Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes[J].Int J Mol Sci,2014,15(10):18677-18692.DOI: 10.3390/ijms151018677.
    [36]
    BaltenspergerK,KozmaLM,CherniackAD,et al.Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes[J].Science,1993,260(5116):1950-1952.DOI: 10.1126/science.8391166.
    [37]
    Díaz-FloresM,Ibáñez-HernándezMA,GalvánRE,et al.Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat[J].Life Sci,2006,78(22):2601-2607.DOI: 10.1016/j.lfs.2005.10.022.
    [38]
    XuY,OsborneBW,StantonRC.Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex[J].Am J Physiol Renal Physiol,2005,289(5):F1040-1047.DOI: 10.1152/ajprenal.00076.2005.
    [39]
    ZhangZ,ApseK,PangJ,et al.High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells[J].J Biol Chem,2000,275(51):40042-40047.DOI: 10.1074/jbc.M007505200.
    [40]
    ZhangZ,LiewCW,HandyDE,et al.High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis[J].FASEB J,2010,24(5):1497-1505.DOI: 10.1096/fj.09-136572.
    [41]
    KilIS,LeeJH,ShinAH,et al.Glycation-induced inactivation of NADP+-dependent isocitrate dehydrogenase: implications for diabetes and aging[J].Free Radic Biol Med,2004,37(11):1765-1778.DOI: 10.1016/j.freeradbiomed.2004.08.025.
  • 王晓阳-视频.mp4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (99) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return