Citation: | Tao K,Cao T,Hao T.Mechanisms and intervention strategies of angiogenesis disorders in diabetic foot ulcers[J].Chin J Burns Wounds,2025,41(2):120-126.DOI: 10.3760/cma.j.cn501225-20241204-00474. |
[1] |
McDermottK, FangM, BoultonAJM, et al. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers[J]. Diabetes Care,2023,46(1):209-221. DOI: 10.2337/dci22-0043.
|
[2] |
ArmstrongDG, BoultonAJM, BusSA. Diabetic foot ulcers and their recurrence[J]. N Engl J Med,2017,376(24):2367-2375. DOI: 10.1056/NEJMra1615439.
|
[3] |
LinC, LiuJ, SunH. Risk factors for lower extremity amputation in patients with diabetic foot ulcers: a meta-analysis[J]. PLoS One,2020,15(9):e0239236. DOI: 10.1371/journal.pone.0239236.
|
[4] |
DengH, LiB, ShenQ, et al. Mechanisms of diabetic foot ulceration: a review[J]. J Diabetes,2023,15(4):299-312. DOI: 10.1111/1753-0407.13372.
|
[5] |
SchönbornM, ŁączakP, PasiekaP, et al. Pro- and anti-angiogenic factors: their relevance in diabetic foot syndrome-a review[J]. Angiology,2022,73(4):299-311. DOI: 10.1177/00033197211042684.
|
[6] |
王宁,鞠上. 糖尿病足溃疡难愈合机制研究进展[J]. 中华烧伤与创面修复杂志,2022,38(11) :1085-1089. DOI: 10.3760/cma.j.cn501225-20220227-00038.
|
[7] |
OkonkwoUA, DiPietroLA. Diabetes and wound angiogenesis[J]. Int J Mol Sci,2017,18(7):1419. DOI: 10.3390/ijms18071419.
|
[8] |
OkonkwoUA, ChenL, MaD, et al. Compromised angiogenesis and vascular integrity in impaired diabetic wound healing[J]. PLoS One,2020,15(4):e0231962. DOI: 10.1371/journal.pone.0231962.
|
[9] |
La MendolaD, TrincavelliML, MartiniC. Angiogenesis in disease[J]. Int J Mol Sci,2022,23(18):10962.DOI: 10.3390/ijms231810962.
|
[10] |
EelenG, de ZeeuwP, SimonsM, et al. Endothelial cell metabolism in normal and diseased vasculature[J]. Circ Res,2015,116(7):1231-1244. DOI: 10.1161/CIRCRESAHA.116.302855.
|
[11] |
MartinA, KomadaMR, SaneDC. Abnormal angiogenesis in diabetes mellitus[J]. Med Res Rev,2003,23(2):117-145. DOI: 10.1002/med.10024.
|
[12] |
AnY, XuBT, WanSR, et al. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction[J]. Cardiovasc Diabetol,2023,22(1):237. DOI: 10.1186/s12933-023-01965-7.
|
[13] |
LuY, LiuX, ZhaoJ, et al. Single-cell profiling reveals transcriptomic signatures of vascular endothelial cells in non-healing diabetic foot ulcers[J]. Front Endocrinol (Lausanne),2023,14:1275612. DOI: 10.3389/fendo.2023.1275612.
|
[14] |
KhalidM, PetroianuG, AdemA. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives[J]. Biomolecules,2022,12(4):542. DOI: 10.3390/biom12040542.
|
[15] |
PiarulliF, SartoreG, LapollaA. Glyco-oxidation and cardiovascular complications in type 2 diabetes: a clinical update[J]. Acta Diabetol,2013,50(2):101-110. DOI: 10.1007/s00592-012-0412-3.
|
[16] |
DavisFM, KimballA, BoniakowskiA, et al. Dysfunctional wound healing in diabetic foot ulcers: new crossroads[J]. Curr Diab Rep,2018,18(1):2. DOI: 10.1007/s11892-018-0970-z.
|
[17] |
MirzaRE, FangMM, EnnisWJ, et al. Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes[J]. Diabetes,2013,62(7):2579-2587. DOI: 10.2337/db12-1450.
|
[18] |
MirzaRE, FangMM, Weinheimer-HausEM, et al. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice[J]. Diabetes,2014,63(3):1103-1114. DOI: 10.2337/db13-0927.
|
[19] |
MoreyM, O'GaoraP, PanditA, et al. Hyperglycemia acts in synergy with hypoxia to maintain the pro-inflammatory phenotype of macrophages[J]. PLoS One,2019,14(8):e0220577. DOI: 10.1371/journal.pone.0220577.
|
[20] |
ReddyMA, ZhangE, NatarajanR. Epigenetic mechanisms in diabetic complications and metabolic memory[J]. Diabetologia,2015,58(3):443-455. DOI: 10.1007/s00125-014-3462-y.
|
[21] |
DissemondJ, KrögerK, StorckM, et al. Topical oxygen wound therapies for chronic wounds: a review[J]. J Wound Care,2015,24(2):53-54, 56-60, 62-63. DOI: 10.12968/jowc.2015.24.2.53.
|
[22] |
GuanY, NiuH, LiuZ, et al. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation[J]. Sci Adv,2021,7(35):eabj0153. DOI: 10.1126/sciadv.abj0153.
|
[23] |
ArmstrongDG, TanTW, BoultonAJM, et al. Diabetic foot ulcers: a review[J]. JAMA,2023,330(1):62-75. DOI: 10.1001/jama.2023.10578.
|
[24] |
CatrinaSB, ZhengX. Hypoxia and hypoxia-inducible factors in diabetes and its complications[J]. Diabetologia,2021,64(4):709-716. DOI: 10.1007/s00125-021-05380-z.
|
[25] |
ZhuD, WeiW, ZhangJ, et al. Mechanism of damage of HIF-1 signaling in chronic diabetic foot ulcers and its related therapeutic perspectives[J]. Heliyon,2024,10(3):e24656. DOI: 10.1016/j.heliyon.2024.e24656.
|
[26] |
CitronDM, GoldsteinEJ, MerriamCV, et al. Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents[J]. J Clin Microbiol,2007,45(9):2819-2828. DOI: 10.1128/JCM.00551-07.
|
[27] |
AfonsoAC, OliveiraD, SaavedraMJ, et al. Biofilms in diabetic foot ulcers: impact, risk factors and control strategies[J]. Int J Mol Sci,2021,22(15):8278. DOI: 10.3390/ijms22158278.
|
[28] |
ChangM, NguyenTT. Strategy for treatment of infected diabetic foot ulcers[J]. Acc Chem Res,2021,54(5):1080-1093. DOI: 10.1021/acs.accounts.0c00864.
|
[29] |
SloanG, SelvarajahD, TesfayeS. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy[J]. Nat Rev Endocrinol,2021,17(7):400-420. DOI: 10.1038/s41574-021-00496-z.
|
[30] |
JeyamA, McGurnaghanSJ, BlackbournLAK, et al. Diabetic neuropathy is a substantial burden in people with type 1 diabetes and is strongly associated with socioeconomic disadvantage: a population-representative study from Scotland[J]. Diabetes Care,2020,43(4):734-742. DOI: 10.2337/dc19-1582.
|
[31] |
FeldmanEL, CallaghanBC, Pop-BusuiR, et al. Diabetic neuropathy[J]. Nat Rev Dis Primers,2019,5(1):41. DOI: 10.1038/s41572-019-0092-1.
|
[32] |
ChaoCY, CheingGL. Microvascular dysfunction in diabetic foot disease and ulceration[J]. Diabetes Metab Res Rev,2009,25(7):604-614. DOI: 10.1002/dmrr.1004.
|
[33] |
GonçalvesNP, VægterCB, AndersenH, et al. Schwann cell interactions with axons and microvessels in diabetic neuropathy[J]. Nat Rev Neurol,2017,13(3):135-147. DOI: 10.1038/nrneurol.2016.201.
|
[34] |
LennertzRC, MedlerKA, BainJL, et al. Impaired sensory nerve function and axon morphology in mice with diabetic neuropathy[J]. J Neurophysiol,2011,106(2):905-914. DOI: 10.1152/jn.01123.2010.
|
[35] |
TothC, RongLL, YangC, et al. Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy[J]. Diabetes,2008,57(4):1002-1017. DOI: 10.2337/db07-0339.
|
[36] |
YuanG, KhanSA, LuoW, et al. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia[J]. J Cell Physiol,2011,226(11):2925-2933. DOI: 10.1002/jcp.22640.
|
[37] |
Pop-BusuiR, SimaA, StevensM. Diabetic neuropathy and oxidative stress[J]. Diabetes Metab Res Rev,2006,22(4):257-273. DOI: 10.1002/dmrr.625.
|
[38] |
WangY, GravesDT. Keratinocyte function in normal and diabetic wounds and modulation by FOXO1[J]. J Diabetes Res,2020,2020:3714704. DOI: 10.1155/2020/3714704.
|
[39] |
MonaghanMG, BorahR, ThomsenC, et al. Thou shall not heal: overcoming the non-healing behaviour of diabetic foot ulcers by engineering the inflammatory microenvironment[J]. Adv Drug Deliv Rev,2023,203:115120. DOI: 10.1016/j.addr.2023.115120.
|
[40] |
LuoYF, WanXX, ZhaoLL, et al. MicroRNA-139-5p upregulation is associated with diabetic endothelial cell dysfunction by targeting c-jun[J]. Aging (Albany NY),2020,13(1):1186-1211. DOI: 10.18632/aging.202257.
|
[41] |
PanX, YangL, WangS, et al. Semaglutide alleviates inflammation-induced endothelial progenitor cells injury by inhibiting MiR-155 expression in macrophage exosomes[J]. Int Immunopharmacol,2023,119:110196. DOI: 10.1016/j.intimp.2023.110196.
|
[42] |
WanG, ChenY, ChenJ, et al. Regulation of endothelial progenitor cell functions during hyperglycemia: new therapeutic targets in diabetic wound healing[J]. J Mol Med (Berl),2022,100(4):485-498. DOI: 10.1007/s00109-021-02172-1.
|
[43] |
AsoY, JojimaT, IijimaT, et al. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, increases the number of circulating CD34+CXCR4+ cells in patients with type 2 diabetes[J]. Endocrine,2015,50(3):659-664. DOI: 10.1007/s12020-015-0688-5.
|
[44] |
YuX, LiuP, LiZ, et al. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds[J]. Front Endocrinol (Lausanne),2023,14:1099310. DOI: 10.3389/fendo.2023.1099310.
|
[45] |
XiongJ, HuH, GuoR, et al. Mesenchymal stem cell exosomes as a new strategy for the treatment of diabetes complications[J]. Front Endocrinol (Lausanne),2021,12:646233. DOI: 10.3389/fendo.2021.646233.
|
[46] |
LouiselleAE, NiemiecSM, ZgheibC, et al. Macrophage polarization and diabetic wound healing[J]. Transl Res,2021,236:109-116. DOI: 10.1016/j.trsl.2021.05.006.
|
[47] |
AitchesonSM, FrentiuFD, HurnSE, et al. Skin wound healing: normal macrophage function and macrophage dysfunction in diabetic wounds[J]. Molecules,2021,26(16):4917. DOI: 10.3390/molecules26164917.
|
[48] |
LinCW, HungCM, ChenWJ, et al. New horizons of macrophage immunomodulation in the healing of diabetic foot ulcers[J]. Pharmaceutics,2022,14(10):2065. DOI: 10.3390/pharmaceutics14102065.
|
[49] |
苟伟茗, 杨鹏, 卢毅飞, 等. 大鲵皮肤黏液多糖对糖尿病小鼠全层皮肤缺损创面愈合的作用及其机制[J]. 中华烧伤与创面修复杂志, 2025, 41(2): 127-136. DOI: 10.3760/cma.j.cn501225-20240725-00280.
|
[50] |
HuangX, LiangP, JiangB, et al. Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis[J]. Life Sci,2020,259:118246. DOI: 10.1016/j.lfs.2020.118246.
|
[51] |
ZhangZ, ZhangW, XuY, et al. Efficacy of hyperbaric oxygen therapy for diabetic foot ulcers: an updated systematic review and meta-analysis[J]. Asian J Surg,2022,45(1):68-78. DOI: 10.1016/j.asjsur.2021.07.047.
|
[52] |
CapóX, Monserrat-MesquidaM, Quetglas-LlabrésM, et al. Hyperbaric oxygen therapy reduces oxidative stress and inflammation, and increases growth factors favouring the healing process of diabetic wounds[J]. Int J Mol Sci,2023,24(8):7040. DOI: 10.3390/ijms24087040.
|
[53] |
LanB, ZhangL, YangL, et al. Sustained delivery of MMP-9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing[J]. J Nanobiotechnology,2021,19(1):130. DOI: 10.1186/s12951-021-00869-6.
|
[54] |
LiX, XieX, LianW, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model[J]. Exp Mol Med,2018,50(4):1-14. DOI: 10.1038/s12276-018-0058-5.
|
[55] |
中华医学会糖尿病学分会神经并发症学组. 糖尿病神经病变诊治专家共识(2021年版)[J]. 中华糖尿病杂志,2021,13(6):540-557. DOI: 10.3760/cma.j.cn115791-20210310-00143.
|
[56] |
HuangH, XinR, LiX, et al. Physical therapy in diabetic foot ulcer: research progress and clinical application[J]. Int Wound J,2023,20(8):3417-3434. DOI: 10.1111/iwj.14196.
|
[57] |
WanX, NiX, XieY, et al. Research progress and application prospect of adipose-derived stem cell secretome in diabetes foot ulcers healing[J]. Stem Cell Res Ther,2024,15(1):279. DOI: 10.1186/s13287-024-03912-z.
|
[58] |
DuH, LiS, LuJ, et al. Single-cell RNA-seq and bulk-seq identify RAB17 as a potential regulator of angiogenesis by human dermal microvascular endothelial cells in diabetic foot ulcers[J/OL]. Burns Trauma,2023,11:tkad020[2024-12-04]. https://pubmed.ncbi.nlm.nih.gov/37605780/.DOI: 10.1093/burnst/tkad020.
|
[59] |
中国老年医学学会烧创伤分会,中华医学会烧伤外科学分会,中国医师协会创面修复专业委员会. 糖尿病足溃疡合并下肢血管病变的外科诊疗全国专家共识(2024版)[J]. 中华烧伤与创面修复杂志,2024,40(3):206-220. DOI: 10.3760/cma.j.cn501225-20231122-00202.
|