留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干细胞及组织工程诱导皮肤汗腺再生的研究进展

曾迎楠 康洋波 许永安

张灿, 张琼, 张均辉, 等. 组蛋白脱乙酰酶6抑制剂Tubastatin A对人皮肤成纤维细胞增殖和运动的影响及其分子机制[J]. 中华烧伤杂志, 2021, 37(9): 853-859. DOI: 10.3760/cma.j.cn501120-20200519-00274.
引用本文: 曾迎楠, 康洋波, 许永安. 干细胞及组织工程诱导皮肤汗腺再生的研究进展[J]. 中华烧伤杂志, 2021, 37(9): 900-904. DOI: 10.3760/cma.j.cn501120-20200624-00328.
Zhang C,Zhang Q,Zhang JH,et al.Effects and molecular mechanism of histone deacetylase 6 inhibitor Tubastatin A on the proliferation and movement of human skin fibroblasts[J].Chin J Burns,2021,37(9):853-859.DOI: 10.3760/cma.j.cn501120-20200519-00274.
Citation: Zeng YN,Kang YB,Xu YA.Research advances on skin sweat gland regeneration induced by stem cells and tissue engineering[J].Chin J Burns,2021,37(9):900-904.DOI: 10.3760/cma.j.cn501120-20200624-00328.

干细胞及组织工程诱导皮肤汗腺再生的研究进展

doi: 10.3760/cma.j.cn501120-20200624-00328
基金项目: 

国家自然科学基金面上项目 81571916, 81372079

详细信息
    通讯作者:

    许永安,Email:xuyongan2000@zju.edu.cn

Research advances on skin sweat gland regeneration induced by stem cells and tissue engineering

Funds: 

General Program of National Natural Science Foundation of China 81571916, 81372079

More Information
  • 摘要: 皮肤作为哺乳动物最大器官,是抵御外界刺激的第1道防护屏障。汗腺是皮肤重要附属器之一,在维持电解质平衡和调节体温方面起着重要作用。大面积深度烧伤患者通常损伤会达真皮深层甚至皮肤全层,损伤汗腺修复困难,甚至无法再生,患者排汗和体温调节功能受到严重影响,生活质量降低。如何实现汗腺的功能化成为损伤皮肤再生医学的重要研究内容之一。本文对干细胞、组织工程等汗腺再生修复的转化应用技术进行阐述,拟为汗腺再生研究提供理论参考。

     

  • 创伤、烧伤或手术所导致的增生性瘢痕往往难以控制,可导致严重的生理和心理问题1, 2,但有效的预防和治疗措施仍然非常有限。皮肤Fb是创面修复的主要成分之一,其迁移和增殖等生物学行为有序而协调地进行有助于创面修复,而Fb生物学行为的异常可导致创面不愈合或者增生性瘢痕的形成。既往研究表明,在TGF-β等生长因子的刺激下,Fb被激活并过度增殖,合成并分泌胶原蛋白以致大量ECM沉积,从而促进增生性瘢痕的形成3。瘢痕组织中Fb异常增殖是瘢痕组织过度生长和持续存在的主要原因,而Fb运动能力的增强和排列的改变可导致挛缩畸形4。因此,干预Fb增殖及运动可能是寻求瘢痕治疗方法的重要途径。

    组蛋白是真核细胞染色体的重要构成成分,组蛋白乙酰化是其转录后修饰的一种重要形式5。正常生理条件下,组蛋白乙酰转移酶和组蛋白脱乙酰酶(HDAC)之间的活性竞争共同调节组蛋白乙酰化,进而调控染色质重组、基因转录、细胞分裂、血管新生、细胞分化及凋亡等一系列生物学行为6, 7, 8。HDAC6是Ⅱ型HDAC家族成员之一,在纤维化疾病的发生发展中发挥重要作用9, 10,但HDAC6在皮肤Fb中的作用鲜见报道。本研究通过将HDAC6高度选择性抑制剂Tubastatin A11作用于人皮肤Fb,观察其对Fb增殖及运动性的影响,以探讨其作为抗瘢痕药物的可能性及作用机制。

    人皮肤Fb(HSF)株购自苏州北纳生物细胞库,胎牛血清购自美国Gibco公司,DMEM培养液购自美国HyClone公司,Tubastatin A粉剂及二甲基亚砜(DMSO)购自美国Selleck公司,细胞计数试剂盒8(CCK-8)购自海门市碧云天生物技术研究所,兔抗小鼠胞外信号调节激酶1/2(ERK1/2)单克隆抗体及磷酸化ERK1/2(p-ERK1/2)单克隆抗体购自美国Cell Signaling Technology公司,辣根过氧化物酶(HRP)标记的兔抗小鼠GAPDH单克隆抗体购自美国Proteintech公司,HRP标记的山羊抗兔IgG多克隆抗体购自北京中杉金桥生物技术有限公司,Click-it®5-乙炔基-2'-脱氧尿嘧啶核苷(EdU)成像检测试剂盒及4',6-二脒基-2-苯基吲哚(DAPI)购自美国Sigma公司。

    Varioskan Flash型多功能酶标仪购自美国Thermo Scientific公司,TCS-SP5型激光扫描共聚焦显微镜购自德国Leica公司,LSM510 Meta型活细胞工作站购自德国Zeiss公司,ChemiDoc XRS型凝胶成像仪购自美国Bio-Rad公司。

    1.2.1   HSF的培养及Tubastatin A工作液的配制

    采用含100 U/mL青霉素、100 U/mL链霉素、体积分数为10%胎牛血清的DMEM培养液(下称完全培养液)置于37 ℃、含体积分数5%二氧化碳与体积分数21%氧气、湿度95%的条件下培养(下称常规培养)HSF,隔天换液1次,取对数生长期细胞用于后续的实验。采用DMSO溶解并稀释Tubastatin A粉剂,获取浓度为5 mmol/L的母液,抽滤除菌,分装后于-20 ℃储存备用。处理细胞前解冻,并用完全培养液稀释成1、5、10 μmol/L。

    1.2.2   CCK-8法检测不同浓度Tubastatin A对HSF增殖的影响

    取HSF,用完全培养液调整细胞浓度为7.5×104个/mL,接种于96孔板中,每孔100 μL。细胞贴壁后弃去原培养液,PBS冲洗3次,按照随机数字表法分为阴性对照组及1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组,每组设6个复孔,3种浓度Tubastatin A组分别加入含相应终物质的量浓度的Tubastatin A的培养液,阴性对照组加入含终体积分数0.1%DMSO的完全培养液。各组细胞常规培养24 h后,每孔加入CCK-8溶液10 μL,常规培养2 h。采用多功能酶标仪检测波长450 nm处的吸光度值,以此代表细胞增殖活力。本实验重复3次,结果取均值。

    1.2.3   EdU染色法检测不同浓度Tubastatin A对HSF增殖的影响

    取HSF,用完全培养液调整细胞浓度为5×104个/mL,接种于细胞爬片上,同1.2.2进行细胞分组及处理,每组设3个复孔。各组细胞常规培养24 h后,加入10 μmol/L EdU工作液1 mL,37 ℃常规培养2 h,经PBS漂洗、40 g/L多聚甲醛固定、体积分数10%山羊血清室温封闭1 h后,加入DAPI 25 μL染细胞核,PBS再次漂洗后封片、630倍激光扫描共聚焦显微镜下观察细胞EdU阳性染色(绿色荧光)、细胞核阳性染色(蓝色荧光)任意情况,每组选取3个视野拍照。计算EdU阳性细胞率(以此代表细胞增殖活力),EdU阳性细胞率=绿色荧光细胞数÷蓝色荧光细胞数×100%12。本实验重复3次,结果取均值。

    1.2.4   Tubastatin A对HSF运动性的影响

    采用活细胞工作站检测。取HSF,用完全培养液调整细胞浓度为5×104个/mL,接种于24孔板,每孔100 μL。细胞贴壁后弃去原培养液,用PBS冲洗3次,同1.2.2进行细胞分组及处理,每组设3个复孔。各组细胞常规培养24 h后,在活细胞工作站100倍倒置相差显微镜下观察并记录3 h内细胞运动轨迹,各组细胞观察数不少于30个。用ImageJ 1.8.0图像分析软件(美国国立卫生院)分析细胞运动性,以细胞核为参照点获取细胞运动轨迹,测算细胞运动的曲线距离,计算细胞曲线运动速度13。细胞曲线运动速度=细胞曲线运动距离÷细胞运动时间。本实验重复3次,结果取均值。

    1.2.5   Tubastatin A对HSF ERK1/2活性的调节作用

    采用蛋白质印迹法检测。取HSF,用完全培养液调整细胞浓度为2×106个/mL,接种于6孔板,每孔1 mL。细胞同1.2.2进行分组及处理,每组设3个复孔。常规培养24 h后,于冰上裂解细胞,提取细胞总蛋白并定量,取20 μg蛋白样品,进行十二烷基硫酸钠-聚丙烯酰胺凝胶电泳,湿法转膜,50 g/L脱脂奶粉溶液室温封闭2 h。加入兔抗小鼠p-ERK1/2单克隆一抗(稀释比为1∶1 000)、兔抗小鼠ERK1/2单克隆一抗(稀释比为1∶1 000)、HRP标记的兔抗小鼠GAPDH单克隆一抗(稀释比为1∶5 000),4 ℃孵育过夜。次日以含吐温20的三羟甲基氨基甲烷盐缓冲液洗膜3次,每次15 min,然后加入HRP标记的山羊抗兔IgG多克隆二抗(稀释比为1∶5 000),室温孵育1 h。化学发光、显影,凝胶电泳仪获取图像,采用仪器自带的Quantity One软件分析目标条带,以GAPDH为内参照,对p-ERK1/2与ERK1/2的蛋白表达进行定量,并计算p-ERK1/2与ERK1/2比值,表示ERK1/2活性。将阴性对照组的p-ERK1/2与ERK1/2比值设定为1,其余各组p-ERK1/2与ERK1/2比值与阴性对照组的比值作为各组p-ERK1/2与ERK1/2比值的相对结果。本实验重复3次,结果取均值。

    采用SPSS 13.0统计软件进行分析。所有计量资料数据均符合正态分布,以x¯±s表示,组间总体比较行单因素方差分析,组间两两比较行LSD检验(软件自动略去该统计量值),P<0.05为差异有统计学意义。

    2.1.1   CCK-8法

    培养24 h后,阴性对照组及1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞增殖活力分别为1.19±0.07、0.73±0.04、0.67±0.03、0.57±0.06,组间总体比较,差异有统计学意义(F=36.41,P<0.001)。培养24 h后,与阴性对照组比较,1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞增殖活力均显著下降(P<0.001);与1 μmol/L Tubastatin A组比较,5 μmol/L Tubastatin A组细胞增殖活力无明显变化(P=0.340),而10 μmol/L Tubastatin A组细胞增殖活力显著下降(P=0.018);而5 μmol/L Tubastatin A组与10 μmol/L Tubastatin A组细胞增殖活力相近(P=0.129)。

    2.1.2   EdU染色法

    培养24 h后,与阴性对照组比较,1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞EdU染色荧光强度减弱,见图1。培养24 h后,阴性对照组、1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组EdU阳性细胞率分别为1.00、0.76±0.04、0.66±0.04、0.57±0.03,组间总体比较,差异有统计学意义(F=38.83,P<0.001)。培养24 h后,与阴性对照组比较,1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组EdU阳性细胞率均显著下降(P<0.001);与1 μmol/L Tubastatin A组比较,5 μmol/L Tubastatin A组及10 μmol/L Tubastatin A组EdU阳性细胞率显著下降(P=0.026、<0.001); 5 μmol/L Tubastatin A组与10 μmol/L Tubastatin A组EdU阳性细胞率相近(P=0.053)。

    1  EdU染色法检测阴性对照组及Tubastatin A处理3组HSF增殖活力 EdU-DAPI×630,图中标尺为25 μm。1A、1B、1C.分别为阴性对照组细胞EdU染色、细胞核染色、细胞EdU染色与细胞核染色重叠图片,细胞核完整,EdU阳性染色细胞较多;1D、1E、1F.分别为1 μmol/L Tubastatin A组细胞EdU染色、细胞核染色、细胞EdU染色与细胞核染色重叠图片,细胞核完整,EdU阳性染色细胞较阴性对照组明显减少;1G、1H、1I及1J、1K、1L.分别为5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞EdU染色、细胞核染色、细胞EdU染色与细胞核染色重叠图片,EdU阳性染色细胞均较1 μmol/L Tubastatin A组减少
    注:HSF为人皮肤成纤维细胞,EdU为5-乙炔基-2'-脱氧尿嘧啶核苷,DAPI为4',6-二脒基-2-苯基吲哚;细胞EdU阳性染色为绿色,细胞核阳性染色为蓝色,绿色+蓝色双荧光染色为增殖的HSF
    2.2.1   细胞运动范围

    观察3 h内,1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞的运动范围与阴性对照组相比均明显缩小,并呈一定的浓度依赖性。见图2

    2  活细胞工作站观察阴性对照组及Tubastatin A处理3组人皮肤成纤维细胞3 h内的运动范围 倒置相差显微镜×100。2A.阴性对照组细胞运动范围较大;2B、2C、2D.分别为1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞运动范围,均较图2A明显缩小
    注:细胞运动起点均为坐标(0,0),运动终点为位于4个象限中的圆点,连接两者之间的曲线为细胞运动轨迹,数据前“-”表示相应轴线上的方向
    2.2.2   细胞运动速度

    观察3 h内,阴性对照组及1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞的曲线运动速度分别为(0.780±0.028)、(0.594±0.023)、(0.469±0.028)、(0.391±0.021)μm/min,组间总体比较,差异有统计学意义(F=44.55,P<0.001)。观察3 h内,与阴性对照组比较,1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞曲线运动速度均显著下降(P<0.001);与1 μmol/L Tubastatin A组比较,5 μmol/L Tubastatin A组和10 μmol/L Tubastatin A组细胞曲线运动速度显著下降(P=0.002、<0.001);与5 μmol/L Tubastatin A组比较,10 μmol/L Tubastatin A组细胞曲线运动速度明显下降(P=0.042)。

    培养24 h后,阴性对照组、1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞ERK1/2的活性分别为1.00、0.70±0.03、0.49±0.05、0.37±0.05,组间总体比较,差异有统计学意义(F=52.84,P<0.001)。培养24 h后,与阴性对照组比较,1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞ERK1/2的活性显著下降(P<0.001);与1 μmol/L Tubastatin A组比较,5 μmol/L Tubastatin A组和10 μmol/L Tubastatin A组细胞ERK1/2的活性显著下降(P=0.001、<0.001);与5 μmol/L Tubastatin A组比较,10 μmol/L Tubastatin A组细胞ERK1/2的活性显著下降(P=0.044)。见图3

    3  蛋白质印迹法检测阴性对照组及Tubastatin A处理3组人皮肤成纤维细胞中ERK1/2及p-ERK1/2的蛋白表达水平
    注:ERK1/2为胞外信号调节激酶1/2,p-ERK1/2为磷酸化ERK1/2,GAPDH为3-磷酸甘油醛脱氢酶;1.阴性对照组,2、3、4.分别为1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组

    哺乳动物细胞中HDAC主要包括4种类型,其中Ⅰ型有HDAC1、HDAC2、HDAC3、HDAC8,Ⅱ型有HDAC4、HDAC5、HDAC6、HDAC7、HDAC9、HDAC10,Ⅲ型有SIRT1-7,Ⅳ型有HDAC1114, 15。HDAC6主要分布于胞质,而其他HDAC主要定位于细胞核中,因而HDAC6具有不同于其他家族成员的分子特征与功能。从结构上看,HDAC6羧基端的去乙酰化酶同源区后紧跟1个特定的泛素化结合位点,可使组蛋白以外的蛋白质发生去乙酰化16。因此,HDAC6是一种独特的去乙酰化酶。

    瘢痕增生的基本过程是Fb大量增殖,导致组织过度纤维化17, 18。HDAC参与多种组织和器官纤维化的发生和发展,包括心脏、肾脏、肝脏和肺等19, 20, 21。研究表明,HDAC抑制剂可下调信号转导及转录激活因子3、TGF-β1等信号通路22, 23, 24,抑制Fb合成胶原蛋白,减少ECM沉积,从而抑制组织纤维化,提示HDAC活性增高可促进组织器官纤维化的发生。近期研究表明,HDAC广谱抑制剂曲古抑菌素A(TSA)通过抑制Smads和Sp1的蛋白表达来抑制TGF-β作用下皮肤Fb的胶原合成与分泌25。此外,有研究表明,TSA具有抑制人角膜Fb合成和分泌ECM的作用26。这些研究提示,HDAC的活性增加可能是瘢痕形成过程中一个新的促纤维化机制。Tubastatin A是一种选择性HDAC6抑制剂,其对HDAC6的选择性抑制作用远远大于其他HDAC27。HDAC6可通过调节Notch1信号通路,促进细胞存活及增殖,而抑制HDAC6可诱导细胞凋亡,抑制细胞周期28, 29。然而,HDAC6在HSF增殖及运动中的作用尚鲜见报道。本研究采用HDAC6选择性抑制剂Tubastatin A刺激HSF,通过CCK-8法及EdU染色检测细胞增殖活力,采用活细胞工作站记录细胞运动轨迹并分析细胞运动范围和曲线运动速度,结果表明,不同浓度的Tubastatin A作用后HSF增殖活力下降、运动范围缩小、曲线运动速度下降,并呈现一定的Tubastatin A浓度依赖性,即Tubastatin A浓度越高,HSF增殖和运动性下降越明显。本研究表明,Tubastatin A可显著下调HSF的增殖和运动性。

    ERK1/2是MAPK家族成员之一,其发生磷酸化修饰后活性增加,对细胞增殖和运动有重要调节作用30, 31,ERK1/2活性通常以p-ERK1/2与ERK1/2比值表示。既往研究表明,ERK1/2可通过诱导c-Myc和缺氧诱导因子1α,激活增殖相关信号转导32。新近研究表明,皮肤瘢痕组织及缺氧处理的皮肤Fb中p-ERK1/2水平增加33,ΕΡΚ1/2信号通路参与调节Fb的增殖、迁移、侵袭等生物学行为34。有关肿瘤侵袭转移的研究表明,HDAC6过表达激活ERK1/2信号通路,从而促进肿瘤的生长35。本研究结果表明,在HDAC6的选择性抑制剂Tubastatin A作用下,HSF中ERK1/2磷酸化水平显著下降,并呈一定的Tubastatin A浓度依赖性,即Tubastatin A浓度越高,HSF中ERK1/2活性下降越明显。这表明HDAC6的选择性抑制剂Tubastatin A可显著抑制HSF中ERK1/2的活性。

    综上,在HSF中,ERK1/2信号通路对HDAC6选择性抑制剂Tubastatin A敏感,ERK1/2活性降低可能参与介导了Tubastatin A对HSF增殖及运动性的抑制效应。这在一定程度上揭示了Tubastatin A在抗HSF增殖和运动中的作用,为Tubastatin A作为抗瘢痕辅助用药提供了理论依据。

    所有作者均声明不存在利益冲突
    广告目次
    浙江医学科技开发有限公司 …………………………………………………………………………………………… 插页1
    上海铠唏尔医疗器械贸易有限公司 …………………………………………………………………………………… 插页2
    南海朗肽制药有限公司 ………………………………………………………………………………………… 对中文目次1
    江西省科星生物工程有限公司 ………………………………………………………………………………… 对中文目次2
    上海腾瑞制药股份有限公司 …………………………………………………………………………………… 对英文目次1
    保赫曼(上海)贸易有限公司 …………………………………………………………………………………… 对英文目次2
    苏州爱得科技发展股份有限公司 ……………………………………………………………………………………… 对正文
    珠海亿胜生物制药有限公司 ……………………………………………………………………………………………… 封三
    武汉维斯第医用科技股份有限公司 ……………………………………………………………………………………… 封底
  • 参考文献(58)

    [1] SatoK, KangWH, SagaK, et al. Biology of sweat glands and their disorders.Ⅱ. Disorders of sweat gland function[J]. J Am Acad Dermatol, 1989, 20(5 Pt 1):713-726. DOI: 10.1016/s0190-9622(89)70081-5.
    [2] SagaK. Structure and function of human sweat glands studied with histochemistry and cytochemistry[J]. Prog Histochem Cytochem, 2002,37(4):323-386. DOI: 10.1016/s0079-6336(02)80005-5.
    [3] 陈润开, 付小兵, 孙晓艳. 体外构建工程化汗腺类器官的初步研究[J]. 解放军医学杂志, 2020, 45(4):384-390. DOI: 10.11855/j.issn.0577-7402.2020.04.07.
    [4] CheshireWP, FreemanR. Disorders of sweating[J]. Semin Neurol, 2003,23(4):399-406. DOI: 10.1055/s-2004-817724.
    [5] ThompsonCM, HockingAM, HonariS, et al. Genetic risk factors for hypertrophic scar development[J]. J Burn Care Res, 2013,34(5):477-482. DOI: 10.1097/BCR.0b013e3182a2aa41.
    [6] ChuongCM, RandallVA, WidelitzRB, et al. Physiological regeneration of skin appendages and implications for regenerative medicine[J]. Physiology (Bethesda), 2012,27(2):61-72. DOI: 10.1152/physiol.00028.2011.
    [7] MaYZ, LiMR, LiuJY,et al.Location, isolation, and identification of mesenchymal stem cells from adult human sweat glands[J].Stem Cells Int,2018,2018:2090276.DOI: 10.1155/2018/2090276.
    [8] LuCP,PolakL,RochaAS,et al.Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair[J].Cell,2012,150(1):136-150.DOI: 10.1016/j.cell.2012.04.045.
    [9] NagelS,RohrF,WeberC,et al.Multipotent nestin-positive stem cells reside in the stroma of human eccrine and apocrine sweat glands and can be propagated robustly in vitro[J].PLoS One,2013,8(10):e78365.DOI: 10.1371/journal.pone.0078365.
    [10] RittiéL, SachsDL, OrringerJS, et al. Eccrine sweat glands are major contributors to reepithelialization of human wounds[J]. Am J Pathol, 2013,182(1):163-171. DOI: 10.1016/j.ajpath.2012.09.019.
    [11] TakahashiK,YamanakaS.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J].Cell,2006,126(4):663-676.DOI: 10.1016/j.cell.2006.07.024.
    [12] 梁含思人外泌汗腺细胞的生物学特性及其iPS细胞向汗腺分化的研究苏州苏州大学2015

    梁含思. 人外泌汗腺细胞的生物学特性及其iPS细胞向汗腺分化的研究[D].苏州:苏州大学,2015.

    [13] JiangYH, JahagirdarBN, ReinhardtRL,et al.Pluripotency of mesenchymal stem cells derived from adult marrow[J].Nature,2002,418(6893):41-49.DOI: 10.1038/nature00870.
    [14] de VilliersJA, HoureldN, AbrahamseH. Adipose derived stem cells and smooth muscle cells: implications for regenerative medicine[J]. Stem Cell Rev Rep, 2009,5(3):256-265. DOI: 10.1007/s12015-009-9084-y.
    [15] PengJ, WangY, ZhangL,et al.Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro[J].Brain Res Bull,2011,84(3):235-243.DOI: 10.1016/j.brainresbull.2010.12.013.
    [16] ZhuH,YangAZ,DuJF,et al.Basic fibroblast growth factor is a key factor that induces bone marrow mesenchymal stem cells towards cells with Schwann cell phenotype[J].Neurosci Lett,2014,559:82-87.DOI: 10.1016/j.neulet.2013.11.044.
    [17] PenolazziL, VecchiatiniR, BignardiS, et al. Influence of obstetric factors on osteogenic potential of umbilical cord-derived mesenchymal stem cells[J]. Reprod Biol Endocrinol, 2009, 7:106. DOI: 10.1186/1477-7827-7-106.
    [18] DengB, WenJH, DingY, et al. Different regulation role of myostatin in differentiating pig ADSCs and MSCs into adipocytes[J]. Cell Biochem Funct, 2012,30(2):145-150. DOI: 10.1002/cbf.1828.
    [19] LiDJ, ChaiJK, ShenCA, et al. Human umbilical cord-derived mesenchymal stem cells differentiate into epidermal-like cells using a novel co-culture technique[J]. Cytotechnology, 2014,66(4):699-708. DOI: 10.1007/s10616-013-9569-z.
    [20] WuYJ, ChenLW, ScottPG, et al. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis[J]. Stem Cells, 2007,25(10):2648-2659. DOI: 10.1634/stemcells.2007-0226.
    [21] HerrmannJL, WeilBR, AbarbanellAM, et al. IL-6 and TGF-α costimulate mesenchymal stem cell vascular endothelial growth factor production by ERK-, JNK-, and PI3K-mediated mechanisms[J]. Shock, 2011,35(5):512-516. DOI: 10.1097/SHK.0b013e31820b2fb9.
    [22] WuY, HuangS, EnheJ, et al. Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice[J]. Int Wound J, 2014,11(6):701-710. DOI: 10.1111/iwj.12034.
    [23] KangJG, ParkSB, SeoMS, et al. Characterization and clinical application of mesenchymal stem cells from equine umbilical cord blood[J]. J Vet Sci, 2013,14(3):367-371. DOI: 10.4142/jvs.2013.14.3.367.
    [24] BiancoP, RiminucciM, GronthosS, et al. Bone marrow stromal stem cells: nature, biology, and potential applications[J]. Stem Cells, 2001,19(3):180-192. DOI: 10.1634/stemcells.19-3-180.
    [25] FuXB, FangLJ, LiXK, et al. Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury[J]. Wound Repair Regen, 2006,14(3):325-335. DOI: 10.1111/j.1743-6109.2006.00128.x.
    [26] SrivastavaAK,DurmowiczMC,HartungAJ,et al.Ectodysplasin-A1 is sufficient to rescue both hair growth and sweat glands in Tabby mice[J].Hum Mol Genet,2001,10(26):2973-2981.DOI: 10.1093/hmg/10.26.2973.
    [27] CaiS, PanY, HanB, et al. Transplantation of human bone marrow-derived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands[J]. Chin Med J (Engl), 2011,124(15):2260-2268. DOI: 10.3760/cma.j.issn.0366-6999.2011.15.004.
    [28] SunSJ,XiaoJ,HuoJH,et al.Targeting ectodysplasin promotor by CRISPR/dCas9-effector effectively induces the reprogramming of human bone marrow-derived mesenchymal stem cells into sweat gland-like cells[J].Stem Cell Res Ther,2018,9(1):8. DOI: 10.1186/s13287-017-0758-0.
    [29] 赵换军,丁路,付潇潇,等.HDAC4基因甲基化对hMSCs向汗腺样细胞诱导转分化的影响[J].中国应用生理学杂志,2018,34(4):360-363. DOI: 10.12047/j.cjap.5584.2018.082.
    [30] 艾丽,翁立新,孙同柱.热休克汗腺细胞诱导人骨髓间充质干细胞的表型转化[J].中国组织工程研究,2013,17(6):985-991. DOI: 10.3969/j.issn.2095-4344.2013.06.007.
    [31] 谭志军,陈艳,赵洪良,等.人骨髓间充质干细胞与其来源的汗腺样细胞微小RNAs差异表达谱分析[J].中华医学杂志,2015,95(32):2626-2629.DOI: 10.3760/cma.j.issn.0376-2491.2015.32.013.
    [32] 赵志娇人脐带间充质干细胞向汗腺细胞诱导分化及向裸鼠移植的研究石家庄河北医科大学2013

    赵志娇. 人脐带间充质干细胞向汗腺细胞诱导分化及向裸鼠移植的研究[D].石家庄:河北医科大学,2013.

    [33] XuYA, HongYC, XuMY, et al. Role of keratinocyte growth factor in the differentiation of sweat gland-like cells from human umbilical cord-derived mesenchymal stem cells[J]. Stem Cells Transl Med, 2016,5(1):106-116. DOI: 10.5966/sctm.2015-0081.
    [34] SegrellesC, Santos-de-FrutosK, ParamioJM, et al. Competitive repopulation assay of long-term epidermal stem cell regeneration potential[J]. Methods Mol Biol, 2020,2109:45-53. DOI: 10.1007/7651_2019_234.
    [35] CotsarelisG,SunTT,LavkerRM.Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis[J].Cell,1990,61(7):1329-1337.DOI: 10.1016/0092-8674(90)90696-c.
    [36] LaiYC,ChuongCM.The "tao" of integuments[J].Science,2016,354(6319):1533-1534.DOI: 10.1126/science.aal4572.
    [37] TaylorDK, BubierJA, SilvaKA, et al. Development, structure, and keratin expression in C57BL/6J mouse eccrine glands[J]. Vet Pathol, 2012,49(1):146-154. DOI: 10.1177/0300985811430511.
    [38] FuXB, LiJF, SunXQ, et al. Epidermal stem cells are the source of sweat glands in human fetal skin: evidence of synergetic development of stem cells, sweat glands, growth factors, and matrix metalloproteinases[J]. Wound Repair Regen, 2005,13(1):102-108. DOI: 10.1111/j.1067-1927.2005.130113.x.
    [39] ShikijiT,MinamiM,InoueT,et al.Keratinocytes can differentiate into eccrine sweat ducts in vitro: involvement of epidermal growth factor and fetal bovine serum[J].J Dermatol Sci,2003,33(3):141-150.DOI: 10.1016/j.jdermsci.2003.09.004.
    [40] 邓辰亮,杨松林,郑江红,等.诱导表皮干细胞向汗腺上皮细胞分化的研究[J].组织工程与重建外科杂志,2009,5(5):250-252.DOI: 10.3969/j.issn.1673-0364.2009.05.003.
    [41] 宋志芳,刘德伍,彭燕,等.miRNA-203转染诱导人表皮干细胞向汗腺细胞分化的研究[J].中国修复重建外科杂志,2015,29(3):343-350. DOI: 10.7507/1002-1892.20150073.
    [42] 王元元,杨桂红,杨涛,等.人表皮干细胞体外诱导分化为汗腺样上皮细胞的研究[J].重庆医学,2017,46(10):1297-1299.DOI: 10.3969/j.issn.1671-8348.2017.10.001.
    [43] HuangS, YaoB, XieJF, et al. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration[J]. Acta Biomater, 2016,32:170-177. DOI: 10.1016/j.actbio.2015.12.039.
    [44] HuT, XuYD, YaoB, et al. Developing a novel and convenient model for investigating sweat gland morphogenesis from epidermal stem cells[J]. Stem Cells Int, 2019,2019:4254759. DOI: 10.1155/2019/4254759.
    [45] HiernerR, DegreefH, VranckxJJ, et al. Skin grafting and wound healing-the "dermato-plastic team approach"[J]. Clin Dermatol, 2005,23(4):343-352. DOI: 10.1016/j.clindermatol.2004.07.028.
    [46] 刘煜凡,黄沙,付小兵.皮肤附属器汗腺发育及功能的机制研究[J].生命科学,2020,32(3):219-226. DOI: 10.13376/j.cbls/2020030.
    [47] GreenwoodJE, ClausenJ, KavanaghS.Experience with biobrane: uses and caveats for success[J].Eplasty,2009,9:e25.
    [48] YaoB,WangR,WangYH,et al.Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration[J].Sci Adv,2020,6(10):eaaz1094.DOI: 10.1126/sciadv.aaz1094.
    [49] MoiemenNS, VlachouE, StaianoJJ, et al. Reconstructive surgery with Integra dermal regeneration template: histologic study, clinical evaluation, and current practice[J]. Plast Reconstr Surg, 2006 ,117(7 Suppl): S160-174. DOI: 10.1097/01.prs.0000222609.40461.68.
    [50] WainwrightDJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns[J]. Burns, 1995,21(4):243-248. DOI: 10.1016/0305-4179(95)93866-i.
    [51] AtalaA, KasperFK, MikosAG. Engineering complex tissues[J]. Sci Transl Med, 2012,4(160):160rv12. DOI: 10.1126/scitranslmed.3004890.
    [52] LiHH,LiXX,ZhangMJ,et al.Three-dimensional co-culture of BM-MSCs and eccrine sweat gland cells in Matrigel promotes transdifferentiation of BM-MSCs[J].J Mol Histol,2015,46(4/5):431-438.DOI: 10.1007/s10735-015-9632-5.
    [53] HuangS, LuG, WuY, et al. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair[J]. J Dermatol Sci, 2012,66(1):29-36. DOI: 10.1016/j.jdermsci.2012.02.002.
    [54] KolakshyapatiP,LiXY,ChenCY,et al.Gene-activated matrix/bone marrow-derived mesenchymal stem cells constructs regenerate sweat glands-like structure in vivo[J].Sci Rep,2017,7(1):17630.DOI: 10.1038/s41598-017-17967-x.
    [55] PatiF,JangJ,HaDH,et al.Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink[J].Nat Commun,2014,5:3935.DOI: 10.1038/ncomms4935.
    [56] KochL, DeiwickA, SchlieS, et al. Skin tissue generation by laser cell printing[J]. Biotechnol Bioeng, 2012,109(7):1855-1863. DOI: 10.1002/bit.24455.
    [57] MichaelS,SorgH,PeckCT,et al.Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice[J].PLoS One,2013,8(3):e57741.DOI: 10.1371/journal.pone.0057741.
    [58] ChenLY, DuLJ, ZhangL, et al. EGFR inhibitor AG1478 blocks the formation of 3D structures mainly through ERK signaling pathway in Matrigel-induced 3D reconstruction of eccrine sweat gland-like structures[J]. J Mol Histol, 2020,51(2):191-197. DOI: 10.1007/s10735-020-09869-6.
  • 加载中
计量
  • 文章访问数:  360
  • HTML全文浏览量:  204
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-24

目录

/

返回文章
返回