Research advances on skin sweat gland regeneration induced by stem cells and tissue engineering
-
摘要: 皮肤作为哺乳动物最大器官,是抵御外界刺激的第1道防护屏障。汗腺是皮肤重要附属器之一,在维持电解质平衡和调节体温方面起着重要作用。大面积深度烧伤患者通常损伤会达真皮深层甚至皮肤全层,损伤汗腺修复困难,甚至无法再生,患者排汗和体温调节功能受到严重影响,生活质量降低。如何实现汗腺的功能化成为损伤皮肤再生医学的重要研究内容之一。本文对干细胞、组织工程等汗腺再生修复的转化应用技术进行阐述,拟为汗腺再生研究提供理论参考。Abstract: As the largest organ in mammals, skin is the first protective barrier against external stimuli. Sweat glands are one of the important cutaneous appendages and play an important role in maintaining electrolyte balance and regulating body temperature. Patients with extensive deep burns usually suffer from damage to deep dermis or the entire skin layer. The damaged sweat glands are difficult to repair and even unable to regenerate, which seriously affects patients' sweating and thermo-regulation function, reduces patients' quality of lives. How to achieve the functionalization of sweat glands has become one of the important researches in regenerative medicine of damaged skin. This review summarizes the translational and application technology of sweat gland regeneration and repair using stem cells and tissue engineering, in order to provide a theoretical basis for the research of sweat gland regeneration.
-
Key words:
- Sweat glands /
- Translational research /
- Mesenchymal stem cells /
- Tissue engineering
-
参考文献
(58) [1] SatoK, KangWH, SagaK, et al. Biology of sweat glands and their disorders.Ⅱ. Disorders of sweat gland function[J]. J Am Acad Dermatol, 1989, 20(5 Pt 1):713-726. DOI: 10.1016/s0190-9622(89)70081-5. [2] SagaK. Structure and function of human sweat glands studied with histochemistry and cytochemistry[J]. Prog Histochem Cytochem, 2002,37(4):323-386. DOI: 10.1016/s0079-6336(02)80005-5. [3] 陈润开, 付小兵, 孙晓艳. 体外构建工程化汗腺类器官的初步研究[J]. 解放军医学杂志, 2020, 45(4):384-390. DOI: 10.11855/j.issn.0577-7402.2020.04.07. [4] CheshireWP, FreemanR. Disorders of sweating[J]. Semin Neurol, 2003,23(4):399-406. DOI: 10.1055/s-2004-817724. [5] ThompsonCM, HockingAM, HonariS, et al. Genetic risk factors for hypertrophic scar development[J]. J Burn Care Res, 2013,34(5):477-482. DOI: 10.1097/BCR.0b013e3182a2aa41. [6] ChuongCM, RandallVA, WidelitzRB, et al. Physiological regeneration of skin appendages and implications for regenerative medicine[J]. Physiology (Bethesda), 2012,27(2):61-72. DOI: 10.1152/physiol.00028.2011. [7] MaYZ, LiMR, LiuJY,et al.Location, isolation, and identification of mesenchymal stem cells from adult human sweat glands[J].Stem Cells Int,2018,2018:2090276.DOI: 10.1155/2018/2090276. [8] LuCP,PolakL,RochaAS,et al.Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair[J].Cell,2012,150(1):136-150.DOI: 10.1016/j.cell.2012.04.045. [9] NagelS,RohrF,WeberC,et al.Multipotent nestin-positive stem cells reside in the stroma of human eccrine and apocrine sweat glands and can be propagated robustly in vitro[J].PLoS One,2013,8(10):e78365.DOI: 10.1371/journal.pone.0078365. [10] RittiéL, SachsDL, OrringerJS, et al. Eccrine sweat glands are major contributors to reepithelialization of human wounds[J]. Am J Pathol, 2013,182(1):163-171. DOI: 10.1016/j.ajpath.2012.09.019. [11] TakahashiK,YamanakaS.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J].Cell,2006,126(4):663-676.DOI: 10.1016/j.cell.2006.07.024. [12] 梁含思 人外泌汗腺细胞的生物学特性及其iPS细胞向汗腺分化的研究 苏州 苏州大学 2015 梁含思. 人外泌汗腺细胞的生物学特性及其iPS细胞向汗腺分化的研究[D].苏州:苏州大学,2015.
[13] JiangYH, JahagirdarBN, ReinhardtRL,et al.Pluripotency of mesenchymal stem cells derived from adult marrow[J].Nature,2002,418(6893):41-49.DOI: 10.1038/nature00870. [14] de VilliersJA, HoureldN, AbrahamseH. Adipose derived stem cells and smooth muscle cells: implications for regenerative medicine[J]. Stem Cell Rev Rep, 2009,5(3):256-265. DOI: 10.1007/s12015-009-9084-y. [15] PengJ, WangY, ZhangL,et al.Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro[J].Brain Res Bull,2011,84(3):235-243.DOI: 10.1016/j.brainresbull.2010.12.013. [16] ZhuH,YangAZ,DuJF,et al.Basic fibroblast growth factor is a key factor that induces bone marrow mesenchymal stem cells towards cells with Schwann cell phenotype[J].Neurosci Lett,2014,559:82-87.DOI: 10.1016/j.neulet.2013.11.044. [17] PenolazziL, VecchiatiniR, BignardiS, et al. Influence of obstetric factors on osteogenic potential of umbilical cord-derived mesenchymal stem cells[J]. Reprod Biol Endocrinol, 2009, 7:106. DOI: 10.1186/1477-7827-7-106. [18] DengB, WenJH, DingY, et al. Different regulation role of myostatin in differentiating pig ADSCs and MSCs into adipocytes[J]. Cell Biochem Funct, 2012,30(2):145-150. DOI: 10.1002/cbf.1828. [19] LiDJ, ChaiJK, ShenCA, et al. Human umbilical cord-derived mesenchymal stem cells differentiate into epidermal-like cells using a novel co-culture technique[J]. Cytotechnology, 2014,66(4):699-708. DOI: 10.1007/s10616-013-9569-z. [20] WuYJ, ChenLW, ScottPG, et al. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis[J]. Stem Cells, 2007,25(10):2648-2659. DOI: 10.1634/stemcells.2007-0226. [21] HerrmannJL, WeilBR, AbarbanellAM, et al. IL-6 and TGF-α costimulate mesenchymal stem cell vascular endothelial growth factor production by ERK-, JNK-, and PI3K-mediated mechanisms[J]. Shock, 2011,35(5):512-516. DOI: 10.1097/SHK.0b013e31820b2fb9. [22] WuY, HuangS, EnheJ, et al. Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice[J]. Int Wound J, 2014,11(6):701-710. DOI: 10.1111/iwj.12034. [23] KangJG, ParkSB, SeoMS, et al. Characterization and clinical application of mesenchymal stem cells from equine umbilical cord blood[J]. J Vet Sci, 2013,14(3):367-371. DOI: 10.4142/jvs.2013.14.3.367. [24] BiancoP, RiminucciM, GronthosS, et al. Bone marrow stromal stem cells: nature, biology, and potential applications[J]. Stem Cells, 2001,19(3):180-192. DOI: 10.1634/stemcells.19-3-180. [25] FuXB, FangLJ, LiXK, et al. Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury[J]. Wound Repair Regen, 2006,14(3):325-335. DOI: 10.1111/j.1743-6109.2006.00128.x. [26] SrivastavaAK,DurmowiczMC,HartungAJ,et al.Ectodysplasin-A1 is sufficient to rescue both hair growth and sweat glands in Tabby mice[J].Hum Mol Genet,2001,10(26):2973-2981.DOI: 10.1093/hmg/10.26.2973. [27] CaiS, PanY, HanB, et al. Transplantation of human bone marrow-derived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands[J]. Chin Med J (Engl), 2011,124(15):2260-2268. DOI: 10.3760/cma.j.issn.0366-6999.2011.15.004. [28] SunSJ,XiaoJ,HuoJH,et al.Targeting ectodysplasin promotor by CRISPR/dCas9-effector effectively induces the reprogramming of human bone marrow-derived mesenchymal stem cells into sweat gland-like cells[J].Stem Cell Res Ther,2018,9(1):8. DOI: 10.1186/s13287-017-0758-0. [29] 赵换军,丁路,付潇潇,等.HDAC4基因甲基化对hMSCs向汗腺样细胞诱导转分化的影响[J].中国应用生理学杂志,2018,34(4):360-363. DOI: 10.12047/j.cjap.5584.2018.082. [30] 艾丽,翁立新,孙同柱.热休克汗腺细胞诱导人骨髓间充质干细胞的表型转化[J].中国组织工程研究,2013,17(6):985-991. DOI: 10.3969/j.issn.2095-4344.2013.06.007. [31] 谭志军,陈艳,赵洪良,等.人骨髓间充质干细胞与其来源的汗腺样细胞微小RNAs差异表达谱分析[J].中华医学杂志,2015,95(32):2626-2629.DOI: 10.3760/cma.j.issn.0376-2491.2015.32.013. [32] 赵志娇 人脐带间充质干细胞向汗腺细胞诱导分化及向裸鼠移植的研究 石家庄 河北医科大学 2013 赵志娇. 人脐带间充质干细胞向汗腺细胞诱导分化及向裸鼠移植的研究[D].石家庄:河北医科大学,2013.
[33] XuYA, HongYC, XuMY, et al. Role of keratinocyte growth factor in the differentiation of sweat gland-like cells from human umbilical cord-derived mesenchymal stem cells[J]. Stem Cells Transl Med, 2016,5(1):106-116. DOI: 10.5966/sctm.2015-0081. [34] SegrellesC, Santos-de-FrutosK, ParamioJM, et al. Competitive repopulation assay of long-term epidermal stem cell regeneration potential[J]. Methods Mol Biol, 2020,2109:45-53. DOI: 10.1007/7651_2019_234. [35] CotsarelisG,SunTT,LavkerRM.Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis[J].Cell,1990,61(7):1329-1337.DOI: 10.1016/0092-8674(90)90696-c. [36] LaiYC,ChuongCM.The "tao" of integuments[J].Science,2016,354(6319):1533-1534.DOI: 10.1126/science.aal4572. [37] TaylorDK, BubierJA, SilvaKA, et al. Development, structure, and keratin expression in C57BL/6J mouse eccrine glands[J]. Vet Pathol, 2012,49(1):146-154. DOI: 10.1177/0300985811430511. [38] FuXB, LiJF, SunXQ, et al. Epidermal stem cells are the source of sweat glands in human fetal skin: evidence of synergetic development of stem cells, sweat glands, growth factors, and matrix metalloproteinases[J]. Wound Repair Regen, 2005,13(1):102-108. DOI: 10.1111/j.1067-1927.2005.130113.x. [39] ShikijiT,MinamiM,InoueT,et al.Keratinocytes can differentiate into eccrine sweat ducts in vitro: involvement of epidermal growth factor and fetal bovine serum[J].J Dermatol Sci,2003,33(3):141-150.DOI: 10.1016/j.jdermsci.2003.09.004. [40] 邓辰亮,杨松林,郑江红,等.诱导表皮干细胞向汗腺上皮细胞分化的研究[J].组织工程与重建外科杂志,2009,5(5):250-252.DOI: 10.3969/j.issn.1673-0364.2009.05.003. [41] 宋志芳,刘德伍,彭燕,等.miRNA-203转染诱导人表皮干细胞向汗腺细胞分化的研究[J].中国修复重建外科杂志,2015,29(3):343-350. DOI: 10.7507/1002-1892.20150073. [42] 王元元,杨桂红,杨涛,等.人表皮干细胞体外诱导分化为汗腺样上皮细胞的研究[J].重庆医学,2017,46(10):1297-1299.DOI: 10.3969/j.issn.1671-8348.2017.10.001. [43] HuangS, YaoB, XieJF, et al. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration[J]. Acta Biomater, 2016,32:170-177. DOI: 10.1016/j.actbio.2015.12.039. [44] HuT, XuYD, YaoB, et al. Developing a novel and convenient model for investigating sweat gland morphogenesis from epidermal stem cells[J]. Stem Cells Int, 2019,2019:4254759. DOI: 10.1155/2019/4254759. [45] HiernerR, DegreefH, VranckxJJ, et al. Skin grafting and wound healing-the "dermato-plastic team approach"[J]. Clin Dermatol, 2005,23(4):343-352. DOI: 10.1016/j.clindermatol.2004.07.028. [46] 刘煜凡,黄沙,付小兵.皮肤附属器汗腺发育及功能的机制研究[J].生命科学,2020,32(3):219-226. DOI: 10.13376/j.cbls/2020030. [47] GreenwoodJE, ClausenJ, KavanaghS.Experience with biobrane: uses and caveats for success[J].Eplasty,2009,9:e25. [48] YaoB,WangR,WangYH,et al.Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration[J].Sci Adv,2020,6(10):eaaz1094.DOI: 10.1126/sciadv.aaz1094. [49] MoiemenNS, VlachouE, StaianoJJ, et al. Reconstructive surgery with Integra dermal regeneration template: histologic study, clinical evaluation, and current practice[J]. Plast Reconstr Surg, 2006 ,117(7 Suppl): S160-174. DOI: 10.1097/01.prs.0000222609.40461.68. [50] WainwrightDJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns[J]. Burns, 1995,21(4):243-248. DOI: 10.1016/0305-4179(95)93866-i. [51] AtalaA, KasperFK, MikosAG. Engineering complex tissues[J]. Sci Transl Med, 2012,4(160):160rv12. DOI: 10.1126/scitranslmed.3004890. [52] LiHH,LiXX,ZhangMJ,et al.Three-dimensional co-culture of BM-MSCs and eccrine sweat gland cells in Matrigel promotes transdifferentiation of BM-MSCs[J].J Mol Histol,2015,46(4/5):431-438.DOI: 10.1007/s10735-015-9632-5. [53] HuangS, LuG, WuY, et al. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair[J]. J Dermatol Sci, 2012,66(1):29-36. DOI: 10.1016/j.jdermsci.2012.02.002. [54] KolakshyapatiP,LiXY,ChenCY,et al.Gene-activated matrix/bone marrow-derived mesenchymal stem cells constructs regenerate sweat glands-like structure in vivo[J].Sci Rep,2017,7(1):17630.DOI: 10.1038/s41598-017-17967-x. [55] PatiF,JangJ,HaDH,et al.Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink[J].Nat Commun,2014,5:3935.DOI: 10.1038/ncomms4935. [56] KochL, DeiwickA, SchlieS, et al. Skin tissue generation by laser cell printing[J]. Biotechnol Bioeng, 2012,109(7):1855-1863. DOI: 10.1002/bit.24455. [57] MichaelS,SorgH,PeckCT,et al.Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice[J].PLoS One,2013,8(3):e57741.DOI: 10.1371/journal.pone.0057741. [58] ChenLY, DuLJ, ZhangL, et al. EGFR inhibitor AG1478 blocks the formation of 3D structures mainly through ERK signaling pathway in Matrigel-induced 3D reconstruction of eccrine sweat gland-like structures[J]. J Mol Histol, 2020,51(2):191-197. DOI: 10.1007/s10735-020-09869-6.
计量
- 文章访问数: 299
- HTML全文浏览量: 175
- PDF下载量: 30
- 被引次数: 0