-
摘要: 烧伤创面愈合后常表现出一定程度的色素沉着障碍,不仅引起患者的美观和心理问题,影响其正常社交活动,还增加了患处皮肤癌和光老化的风险。正常皮肤色素沉着机制已被广泛研究,但烧伤后皮肤色素沉着障碍的机制有待进一步探索。因此本文在阐述正常皮肤色素沉着机制的基础上对烧伤后创面皮肤色素沉着障碍的最新研究成果进行综述。Abstract: Burn wound healing often shows a certain degree of pigmentation disorder. It may not only cause cosmetic and psychological issues affecting patient's normal social activities, but also increase risk of skin cancer or photoaging. Although normal skin pigmentation is fairly well studied, the mechanism that leads to dyspigmentation after burn injury needs to be further explored. Based on summarizing the mechanism of normal skin pigmentation, this paper reviews the latest research progress in postburn dyspigmentation in recent years.
-
(1)腓浅动脉穿支解剖位置较为恒定,均走行于肌间隔内,无须过多解剖游离,转移不受蒂部旋转角度限制,供区损伤小,是修复拇趾皮肤软组织缺损较为理想的供区,此前鲜见报道。
(2)术前于腓骨小头与外踝尖连线向胫侧平移2 cm周围行彩色多普勒超声定位腓浅动脉穿支,穿支定位更明确,操作难度、手术风险明显降低。
随着工业的飞速发展,外伤所致拇趾皮肤软组织缺损患者日益增多,以往多行残端修整或截趾,以牺牲趾体长度的代价来换取创面的简单闭合。但由于生活水平的提高,患者保留拇趾长度、恢复良好外观及功能的意愿愈发强烈,临床医师处理愈发棘手[1, 2]。本研究团队采用游离腓浅动脉穿支皮瓣修复拇趾皮肤软组织缺损,临床效果较佳。
1. 对象与方法
本回顾性观察性研究符合《赫尔辛基宣言》的基本原则。
1.1 入选标准
纳入标准:拇趾皮肤软组织缺损,采用游离腓浅动脉穿支皮瓣修复者;双侧小腿皮肤完整,且无外伤史及皮肤病史者。排除标准:随访时间不足6个月者,术中及随访资料不全者。
1.2 临床资料
2020年1月—2021年1月,苏州大学附属瑞华医院足踝外科收治13例拇趾皮肤软组织缺损患者,其中男12例、女1例;年龄16~53岁,平均41岁。致伤原因:重物砸伤者6例,叉车压伤者3例,皮带绞伤者1例,机器夹伤者2例,电锯伤者1例。患者伤后1~4 h,平均2.5 h急诊入院。入院后完善相关检查,均行急诊Ⅰ期清创,伴骨折行骨折复位内固定术者13例,伴血管、神经、肌腱损伤行探查修复术者2例,趾体离断行断趾再植术者5例,皮肤撕脱行撕脱皮肤回植术者6例。急诊术后皮肤软组织坏死部位:拇趾甲床者4例,拇趾背侧者4例,拇趾趾腹者3例,拇趾腓侧者1例,拇趾胫侧者1例。待坏死界限清晰后,行游离腓浅动脉穿支皮瓣修复。急诊手术至皮瓣修复时间为10~38 d,平均19.5 d。
1.3 治疗方法
1.3.1 术前穿支定位
术前于患趾同侧小腿,应用彩色多普勒超声诊断仪,沿腓骨小头至外踝尖连线向胫侧平移2 cm的线,由近及远寻找腓浅动脉穿支穿出点并于体表标记。测量腓骨小头与外踝尖连线长度(32~37 cm,平均34 cm)并标记中点。13例患者13个皮瓣供区共定位41条穿支,平均每个供区3.15条穿支。
1.3.2 麻醉方式
所有手术均采用脊椎麻醉+连续硬膜外麻醉。
1.3.3 受区准备
供受区均在气压止血带下进行手术。予体积分数3%过氧化氢、生理盐水、10 g/L苯扎溴铵冲洗创面,彻底切除坏死组织,刮除创面肉芽组织直至出现新鲜渗血,修剪距创缘0.2 cm的创周皮肤。部分患者见拇趾末节趾骨部分坏死,予摘除死骨。用生理盐水再次冲洗创面后,自创缘纵行切开皮肤,解剖受区血管,首选第一跖背动脉及趾背静脉为受区血管。放松止血带,观察血管喷血良好后标记备用。本组患者扩创后皮肤软组织缺损面积为4.5 cm×2.5 cm~12.0 cm×3.0 cm。
1.3.4 皮瓣设计
根据创面大小、形状设计样布。将腓骨小头至外踝尖连线向胫侧平移2 cm的线作为皮瓣轴心线,以轴心线中点附近术前彩色多普勒超声定位的穿支穿出点为中心,根据样布设计腓浅动脉穿支皮瓣,皮瓣面积较创面面积适当扩大。
1.3.5 皮瓣切取
沿设计线切开皮瓣前缘皮肤,于深筋膜浅层解剖寻找腓浅动脉穿支穿出点。确认穿支进入皮瓣后,根据穿支实际位置,适当调整皮瓣的切取位置。游离皮瓣周缘,于腓骨长肌和趾长伸肌间隔内,沿穿支走行向近端解剖分离,沿途结扎穿支发出的肌支,直至见到腓浅动脉主干及其伴行的腓浅神经并加以保护。解剖皮瓣蒂部时,常规切取部分深筋膜,避免裸化蒂部穿支。根据受区需要,解剖出足够长度的血管蒂,予结扎并切断。本组患者皮瓣切取面积为5.0 cm×3.0 cm~13.0 cm×4.0 cm。将皮瓣转移至受区,与创缘缝合数针固定。供区彻底止血后直接缝合。
1.3.6 血管吻合
显微镜下将皮瓣蒂部血管与受区动静脉进行端端吻合。本组患者中,皮瓣蒂部血管与第一跖背动脉及趾背静脉吻合者10例,与足底内侧动脉及跖底静脉吻合者1例,与拇趾腓侧趾固有动脉及趾背静脉吻合者2例。皮瓣表面做一小切口观察皮瓣血运,松止血带见皮瓣血运佳后,缝合创缘。用无菌敷料包扎,医用高分子夹板外固定。
1.3.7 术后处理
补充血容量;常规行抗炎、抗凝、抗痉挛治疗;患肢抬高,略高于心脏水平;60 W烤灯照射;皮瓣表面切口处用肝素浸润的棉球湿敷。
1.4 观测指标
术中记录穿支数目、类型及皮瓣切取时间,测量皮瓣穿支血管蒂长度及穿支直径。术后记录皮瓣成活情况、供受区愈合时间及愈合后情况。随访记录皮瓣的色泽、质地、弹性,患者站立、行走功能,供区恢复情况以及患者对供受区恢复情况的满意度。末次随访,采用英国医学研究会感觉功能评定标准[3]评定皮瓣感觉功能,分为5级:S0级为感觉完全丧失,S1级为存在深部痛觉,S2级为存在浅感觉及触觉且有较弱的两点辨别觉,S3级为存在浅感觉及触觉且有较强的两点辨别觉,S4级为感觉正常;采用美国足踝外科学会评分系统[4]对患肢功能进行综合评价,满分为100分,其中90~100分为优,75~89分为良,50~74分为可,<50分为差,另计算优良率。
2. 结果
术中共探及腓浅动脉穿支13条,均为肌间隔穿支;血管蒂长度2~5 cm,平均4 cm;穿支直径0.3~0.5 mm,平均0.4 mm。皮瓣切取时间11~26 min,平均17 min。本组13例患者术后皮瓣均完全成活,未发生血管危象。术后9~18 d,平均13.7 d,供受区创面均愈合良好。术后随访6~14个月,平均8个月,皮瓣色泽、质地、弹性良好;11例患者外形无明显臃肿,另外2例患者因皮下脂肪较厚,外观臃肿,Ⅱ期行皮瓣修薄整形;所有患者均恢复正常行走、站立功能;小腿供区仅遗留一条线状瘢痕,无明显瘢痕增生或色素沉着;所有患者对供受区恢复情况表示满意。末次随访,皮瓣感觉功能评定为S3级者2例、S2级者9例、S1级者2例;患肢功能评分为81~97分,平均89.8分,其中评定为优者7例、良者6例,优良率为100%。
典型病例:患者男,52岁,因重物砸伤致右足拇趾末节骨折伴趾尖动脉、神经断裂及皮肤软组织挫裂3 h入院。入院后急诊行骨折复位内固定及血管、神经修复。术后7 d右足拇趾末节甲床处皮肤发黑、血运不佳,继续予换药观察。待坏死界限清晰后,于入院后12 d切取游离腓浅动脉穿支皮瓣修复创面。术前作右小腿腓骨小头与外踝尖连线,并向胫侧平移2 cm,于该连线周围行彩色多普勒超声定位穿支穿出点,并于体表标记。术前测量的腓骨小头与外踝尖连线长度为32 cm,标记其中点。术中扩创后创面面积为7.5 cm×2.5 cm。同前设计及切取面积为8.0 cm×3.0 cm的腓浅动脉穿支皮瓣,皮瓣血管蒂长度为5 cm、穿支直径为0.4 mm。皮瓣切取时间为11 min。皮瓣切取后供区直接缝合。将皮瓣蒂部血管与受区第一跖背动脉及趾背静脉端端吻合。术后皮瓣存活良好,未出现血管危象。术后10 d,供受区创面愈合。术后8个月随访,皮瓣色泽、质地、弹性良好,外形无明显臃肿;患者恢复正常行走、站立功能;供区仅遗留一条线状瘢痕,无明显瘢痕增生或色素沉着;患者对术后供受区恢复情况表示满意;皮瓣感觉恢复至S2级;患肢功能评分为97分,评定为优。见图1。
3. 讨论
拇趾在足部生物力学中起着至关重要的作用,其不仅参与步态周期的发起[5],同时还承担着行走过程中足趾60%的负荷[2]。大部分截趾或残端修整操作会损伤第一跖趾关节,使足胫侧负重功能受损,负重区域向前足腓侧转移,导致转移性跖痛或外侧足趾畸形[6]。拇趾解剖学完整性遭到破坏,足部抓持力、蹬地力减弱,长此以往,会导致足底溃疡及胼胝体形成。目前针对拇趾皮肤软组织缺损的修复,常需保留趾体长度,恢复解剖学完整性,实现可靠而美观的皮瓣覆盖的同时,将供区并发症降至最低,这也是目前临床医师追求的目标[7]。保留拇趾长度,不仅有利于恢复拇趾及其周围结构的解剖学完整性,还可满足患者对足部美观的要求,避免造成不良的心理影响。
针对拇趾皮肤软组织缺损,皮瓣供区选择较多,但各有优劣。带蒂皮瓣[8, 9, 10]无须显微外科操作,临床应用较广泛。为尽可能降低供区损伤,多于足部非功能区切取皮瓣[11, 12, 13, 14, 15, 16];部分学者选择皮神经营养血管皮瓣[17, 18, 19]以促进皮瓣感觉恢复。穿支皮瓣因较薄,不损伤供区主干血管,已被用于修复足部皮肤软组织缺损[20, 21, 22, 23]。随着显微外科技术的飞速发展,临床医师追求实现供瓣区美学缝合的同时,尽可能降低供区损伤[24, 25, 26, 27]。足部带蒂皮瓣虽与创面质地更为接近,但供受区位于同一部位,影响美观。皮瓣切取宽度有限,若切取面积较大,常需植皮修复,不美观亦不耐磨。小腿远端带蒂皮瓣虽无须进行显微吻合,但若皮瓣蒂部处理不当,易造成牵拉扭转,不利于皮瓣成活。
采用游离腓浅动脉穿支皮瓣修复拇趾皮肤软组织缺损,皮瓣血供丰富,穿支直径大部分为0.5 mm[28, 29, 30],与受区血管直径相近,供受区血管吻合后,皮瓣坏死鲜有发生[31, 32, 33, 34, 35, 36]。本研究术中测量的穿支直径平均0.4 mm,术后皮瓣均顺利成活,未发生血管危象。腓浅动脉穿支皮瓣供区位于小腿外侧,手术体位摆放方便,且该部位皮肤薄且耐磨,颜色、质地与足部接近,术后一般无须进行皮瓣修薄整形,本组也仅有2例患者因外形臃肿行皮瓣修薄整形。腓浅动脉穿支皮瓣蒂部均为肌间隔穿支,解剖游离操作简单,不损伤供区主干血管和肌肉组织;皮瓣血管蒂长度充足,可根据受区需要较为自由进行断蒂;皮瓣切取宽度小于4.0 cm,供区均可直接闭合,避免了因植皮对供区外观及功能的影响。本组患者术中大多选择第一跖背动脉与皮瓣蒂部血管吻合,无须牺牲受区主干血管即可重建皮瓣血运。另外,皮瓣切取时,可携带部分小腿深筋膜或腓骨长肌,用于修复伴有肌腱、肌肉等组织缺损或形成空腔的复杂创面。
但本术式存在以下不足:(1)穿支血管细,解剖费时费力;受区吻合时,操作难度大,有时无法进行端端吻合,对术者穿支血管解剖分离及显微外科技术要求高;(2)腓浅神经上段仅为过路神经,没有发出皮支进入皮瓣内[37],无法与受区合适神经吻合。术后皮瓣未恢复保护性感觉前,应注意防护,避免发生烫伤、冻伤等二次损伤。但因本组患者皮瓣切取面积较小,随访观察到患者术后6个月均可恢复保护性感觉,2例患者感觉甚至可恢复至S3级。
本术式注意事项:(1)术前以腓骨小头与外踝尖连线向胫侧平移2 cm为皮瓣轴心线,于轴心线周围行彩色多普勒超声定位穿支穿出点并于体表标记。优先以皮瓣轴心线中点附近穿支穿出点为中心设计皮瓣,根据术中实际情况对皮瓣位置进行适当调整。(2)优先选择第一跖背动脉作为受区动脉;当第一跖背动脉细小或缺如时,选择趾底动脉或足背动脉分支为受区动脉。本组患者中有3例第一跖背动脉缺如,皮瓣蒂部血管与足底内侧动脉相吻合者1例,与拇趾腓侧趾固有动脉相吻合者2例。(3)术中解剖时,不提倡裸化穿支,应携带部分深筋膜,保护穿支血管的同时,还可保留深筋膜中丰富的血管网。(4)血管吻合应尽量行端端吻合。当受区血管直径为皮瓣蒂部血管直径的2倍及以内时,可对蒂部血管行“鱼嘴样”处理,扩大外径后再吻合;当受区血管直径为皮瓣蒂部血管直径的2倍以上时,可携带一段腓浅动脉主干来进行吻合或将受区血管直径缩小的同时对蒂部血管行“鱼嘴样”处理。(5)皮瓣切取时要注意保护腓浅神经,以免其损伤导致小腿外侧及足背感觉功能障碍。
综上所述,游离腓浅动脉穿支皮瓣血管解剖较为恒定,皮瓣薄且耐磨,色泽、质地良好,皮瓣切取后供区损伤小,可以最大限度保留拇趾外形及功能,是一种修复拇趾皮肤软组织缺损的有效方法。
所有作者均声明不存在利益冲突本刊编辑委员会 -
参考文献
(43) [1] LinJY,FisherDE.Melanocyte biology and skin pigmentation[J].Nature,2007,445(7130):843-850.DOI: 10.1038/nature05660. [2] SpronkI,PolinderS,HaagsmaJA,et al.Patient-reported scar quality of adults after burn injuries: a five-year multicenter follow-up study[J].Wound Repair Regen,2019,27(4):406-414.DOI: 10.1111/wrr.12709. [3] DaiNT,ChangHI,WangYW,et al.Restoration of skin pigmentation after deep partial or full-thickness burn injury[J].Adv Drug Deliv Rev,2018,123:155-164.DOI: 10.1016/j.addr.2017.10.010. [4] ShainAH,BastianBC.From melanocytes to melanomas[J].Nat Rev Cancer,2016,16(6):345-358.DOI: 10.1038/nrc.2016.37. [5] AbbasK,QadirMI,AnwarS.The role of melanin in skin cancer[J].Crit Rev Eukaryot Gene Expr,2019,29(1):17-24.DOI: 10.1615/CritRevEukaryotGeneExpr.2018024980. [6] Del BinoS,DuvalC,BernerdF.Clinical and biological characterization of skin pigmentation diversity and its consequences on UV impact[J].Int J Mol Sci,2018,19(9):2668.DOI: 10.3390/ijms19092668. [7] d'IschiaM,WakamatsuK,et al.Melanins and melanogenesis: from pigment cells to human health and technological applications[J].Pigment Cell Melanoma Res,2015,28(5):520-544.DOI: 10.1111/pcmr.12393. [8] ItoS,WakamatsuK.Chemistry of mixed melanogenesis—pivotal roles of dopaquinone[J].Photochem Photobiol,2008,84(3):582-592.DOI: 10.1111/j.1751-1097.2007.00238.x. [9] D'MelloSA,FinlayGJ,et al.Signaling pathways in melanogenesis[J].Int J Mol Sci,2016, 17(7):1144.DOI: 10.3390/ijms17071144. [10] PavanWJ,SturmRA.The genetics of human skin and hair pigmentation[J].Annu Rev Genomics Hum Genet,2019,20:41-72.DOI: 10.1146/annurev-genom-083118-015230. [11] SchallreuterKU,KothariS,ChavanB,et al.Regulation of melanogenesis—controversies and new concepts[J].Exp Dermatol,2008,17(5):395-404.DOI: 10.1111/j.1600-0625.2007.00675.x. [12] HidaT,WakamatsuK,SviderskayaEV,et al.Agouti protein, mahogunin, and attractin in pheomelanogenesis and melanoblast-like alteration of melanocytes: a cAMP-independent pathway[J].Pigment Cell Melanoma Res,2009,22(5):623-634.DOI: 10.1111/j.1755-148X.2009.00582.x. [13] Wolf HorrellEM,BoulangerMC, D'OrazioJA.Melanocortin 1 receptor: structure, function, and regulation[J].Front Genet,2016,7:95.DOI: 10.3389/fgene.2016.00095. [14] SebergHE,Van OtterlooE,CornellRA.Beyond MITF: multiple transcription factors directly regulate the cellular phenotype in melanocytes and melanoma[J].Pigment Cell Melanoma Res,2017,30(5):454-466.DOI: 10.1111/pcmr.12611. [15] KordaßT,WeberCE,OswaldM,et al.SOX5 is involved in balanced MITF regulation in human melanoma cells[J].BMC Med Genomics,2016,9:10.DOI:1 0.1186/s12920-016-0170-0. [16] GuoH,XingY,LiuY,et al.Wnt/β-catenin signaling pathway activates melanocyte stem cells in vitro and in vivo[J].J Dermatol Sci,2016,83(1):45-51.DOI: 10.1016/j.jdermsci.2016.04.005. [17] LeeAY.Recent progress in melasma pathogenesis[J].Pigment Cell Melanoma Res,2015,28(6):648-660.DOI: 10.1111/pcmr.12404. [18] KumariS,Tien Guan ThngS,Kumar VermaN,et al.Melanogenesis inhibitors[J].Acta Derm Venereol,2018,98(10):924-931.DOI: 10.2340/00015555-3002. [19] YuanXH,JinZH.Paracrine regulation of melanogenesis[J].Br J Dermatol,2018,178(3):632-639.DOI: 10.1111/bjd.15651. [20] KinslechnerK,SchützB,PistekM,et al.Loss of SR-BI down- regulates MITF and suppresses extracellular vesicle release in human melanoma[J].Int J Mol Sci,2019,20(5):1063.DOI: 10.3390/ijms20051063. [21] DunnKJ,BradyM,Ochsenbauer-JamborC,et al.WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action[J].Pigment Cell Res,2005,18(3):167-180.DOI: 10.1111/j.1600-0749.2005.00226.x. [22] NguyenNT,FisherDE.MITF and UV responses in skin: from pigmentation to addiction[J].Pigment Cell Melanoma Res,2019,32(2):224-236.DOI: 10.1111/pcmr.12726. [23] SchallreuterKU,KothariS,HasseS,et al.In situ and in vitro evidence for DCoH/HNF-1 alpha transcription of tyrosinase in human skin melanocytes[J].Biochem Biophys Res Commun,2003,301(2):610-616.DOI: 10.1016/s0006-291x(02)03076-0. [24] LiPH,LiuLH,ChangCC,et al.Silencing stem cell factor gene in fibroblasts to regulate paracrine factor productions and enhance c-Kit expression in melanocytes on melanogenesis[J].Int J Mol Sci,2018,19(5):1475.DOI: 10.3390/ijms19051475. [25] GarmynM,YoungAR,MillerSA.Mechanisms of and variables affecting UVR photoadaptation in human skin[J].Photochem Photobiol Sci,2018,17(12):1932-1940.DOI: 10.1039/c7pp00430c. [26] CichorekM,WachulskaM,StasiewiczA,et al.Skin melanocytes: biology and development[J].Postepy Dermatol Alergol,2013,30(1):30-41.DOI: 10.5114/pdia.2013.33376. [27] TravisTE,GhassemiP,Ramella-RomanJC,et al.A multimodal assessment of melanin and melanocyte activity in abnormally pigmented hypertrophic scar[J].J Burn Care Res,2015,36(1):77-86.DOI: 10.1097/BCR.0000000000000154. [28] ChouWC,TakeoM,RabbaniP,et al.Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling[J].Nat Med,2013,19(7):924-929.DOI: 10.1038/nm.3194. [29] 樊蕊蕊,刘菲琳,郝德顺,等.毛囊源性黑色素细胞的生物学特性及其体外培养技术研究进展[J/CD].中华细胞与干细胞杂志:电子版,2017,7(2):117-123.DOI: 10.3877/cma.j.issn.2095-1221.2017.02.010. [30] SharpeJR,BoothS,JubinK,et al.Progression of wound pH during the course of healing in burns[J].J Burn Care Res,2013,34(3):e201-e208.DOI: 10.1097/BCR.0b013e31825d5569. [31] SaekiH,OikawaA.Stimulation by ionophores of tyrosinase activity of mouse melanoma cells in culture[J].J Invest Dermatol,1985,85(5):423-425.DOI: 10.1111/1523-1747.ep12277091. [32] JothishankarB,SteinSL.Impact of skin color and ethnicity[J].Clin Dermatol,2019,37(5):418-429.DOI: 10.1016/j.clindermatol.2019.07.009. [33] RogasevskaiaTP,SzerencseiRT,JalloulAH,et al.Cellular localization of the K+-dependent Na+-Ca2+ exchanger NCKX5 and the role of the cytoplasmic loop in its distribution in pigmented cells[J].Pigment Cell Melanoma Res,2019,32(1):55-67.DOI: 10.1111/pcmr.12723. [34] AmbrosioAL,BoyleJA,AradiAE,et al.TPC2 controls pigmentation by regulating melanosome pH and size[J].Proc Natl Acad Sci U S A,2016,113(20):5622-5627.DOI: 10.1073/pnas.1600108113. [35] JeschkeMG,van BaarME,ChoudhryMA,et al.Burn injury[J].Nat Rev Dis Primers,2020,6(1):11.DOI: 10.1038/s41572-020-0145-5. [36] HurJ,YangHT,ChunW,et al.Inflammatory cytokines and their prognostic ability in cases of major burn injury[J].Ann Lab Med,2015,35(1):105-110.DOI: 10.3343/alm.2015.35.1.105. [37] SchwachaMG,ThobeBM,DanielT,et al.Impact of thermal injury on wound infiltration and the dermal inflammatory response[J].J Surg Res,2010,158(1):112-120.DOI: 10.1016/j.jss.2008.07.034. [38] SchwachaMG,NickelE,DanielT.Burn injury-induced alterations in wound inflammation and healing are associated with suppressed hypoxia inducible factor-1alpha expression[J].Mol Med,2008,14(9/10):628-633.DOI: 10.2119/2008-00069.Schwacha. [39] CostinGE,HearingVJ.Human skin pigmentation: melanocytes modulate skin color in response to stress[J].FASEB J,2007,21(4):976-994.DOI: 10.1096/fj.06-6649rev. [40] PillaiyarT,ManickamM,JungSH.Recent development of signaling pathways inhibitors of melanogenesis[J].Cell Signal,2017,40:99-115.DOI: 10.1016/j.cellsig.2017.09.004. [41] AdiniI,AdiniA,BazinetL,et al.Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential[J].FASEB J,2015,29(2):662-670.DOI: 10.1096/fj.14-255398. [42] CarneyBC,ChenJH,LukerJN,et al.Pigmentation diathesis of hypertrophic scar: an examination of known signaling pathways to elucidate the molecular pathophysiology of injury-related dyschromia[J].J Burn Care Res,2019,40(1):58-71.DOI: 10.1093/jbcr/iry045. [43] AlkhalilA,CarneyBC,TravisTE,et al.Dyspigmented hypertrophic scars:beyond skin color[J].Pigment Cell Melanoma Res,2019,32(5):643-656.DOI: 10.1111/pcmr.12780. -
2022年1期 烧伤缺血缺氧性损害与休克的防治 组稿专家:申传安 2022年2期 烧伤后炎症与免疫 组稿专家:孙炳伟、贺伟峰 2022年3期 烧伤感染、脓毒症 组稿专家:姚咏明、袁志强 2022年4期 扩张术与瘢痕修复 组稿专家:马显杰 2022年5期 烧伤后脏器功能损害 组稿专家:郇京宁 2022年6期 特殊原因创面(冻伤、自身免疫病创面等) 组稿专家:于家傲 2022年7期 生长因子调控创面修复 组稿专家:肖健 2022年8期 烧伤营养 组稿专家:韩春茂 2022年9期 瘢痕的光电治疗 组稿专家:章一新 2022年10期 生物材料在创面修复中的应用 组稿专家:罗高兴 2022年11期 创面修复中的细胞与干细胞治疗 组稿专家:史春梦 2022年12期 烧伤康复 组稿专家:谢卫国 -
计量
- 文章访问数: 342
- HTML全文浏览量: 74
- PDF下载量: 52
- 被引次数: 0