留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

年龄对人增生性瘢痕硬度和成纤维细胞纤维化表型的影响及其机制

朱冬振 姚斌 崔晓丽 黄沙 付小兵

朱冬振, 姚斌, 崔晓丽, 等. 年龄对人增生性瘢痕硬度和成纤维细胞纤维化表型的影响及其机制[J]. 中华烧伤杂志, 2021, 37(10): 937-945. DOI: 10.3760/cma.j.cn501120-20200810-00374.
引用本文: 朱冬振, 姚斌, 崔晓丽, 等. 年龄对人增生性瘢痕硬度和成纤维细胞纤维化表型的影响及其机制[J]. 中华烧伤杂志, 2021, 37(10): 937-945. DOI: 10.3760/cma.j.cn501120-20200810-00374.
Zhu DZ,Yao B,Cui XL,et al.Effects and mechanism of age on the stiffness and the fibrotic phenotype of fibroblasts of human hypertrophic scar[J].Chin J Burns,2021,37(10):937-945.DOI: 10.3760/cma.j.cn501120-20200810-00374.
Citation: Zhu DZ,Yao B,Cui XL,et al.Effects and mechanism of age on the stiffness and the fibrotic phenotype of fibroblasts of human hypertrophic scar[J].Chin J Burns,2021,37(10):937-945.DOI: 10.3760/cma.j.cn501120-20200810-00374.

年龄对人增生性瘢痕硬度和成纤维细胞纤维化表型的影响及其机制

doi: 10.3760/cma.j.cn501120-20200810-00374
基金项目: 

国家自然科学基金面上项目 32000969, 82002056

解放军总医院军事医学创新研究项目 CX19026

王正国创伤医学发展基金会生长因子复兴计划 SZYZ-TR-03

详细信息
    通讯作者:

    黄沙,Email:stellarahuang@sina.com

Effects and mechanism of age on the stiffness and the fibrotic phenotype of fibroblasts of human hypertrophic scar

Funds: 

General Program of National Natural Science Foundation of China 32000969, 82002056

Military Medicine Innovation Research program of Chinese PLA General Program CX19026

Wang Zhengguo Foundation for Traumatic Medicine Growth Factor Rejuvenation Plan SZYZ-TR-03

More Information
    Corresponding author: Huang Sha, Email: stellarahuang@sina.com
  • 摘要:   目的  探讨年龄对人增生性瘢痕硬度和成纤维细胞(Fb)纤维化表型的影响及其可能的分子机制。  方法  采用实验研究方法。收集2020年1—6月解放军总医院第四医学中心烧伤整形外科收治的10例瘢痕患者(男4例、女6例)手术切除的增生性瘢痕组织和10例患者(男5例、女5例,年龄7~41岁)手术后剩余的正常全层皮肤组织。根据患者年龄,将6例患者[(10.7±1.6)岁]瘢痕组织纳入年轻组,将4例患者[(40.0±2.2)岁]瘢痕组织纳入年长组。对正常皮肤和2组瘢痕组织,行苏木精-伊红(HE)染色观察组织形态,行Masson染色观察胶原形态、排列并测定胶原含量,冻干及金属镀膜后在扫描电子显微镜下观察真皮层胶原纤维微观形态。采用原子力显微镜在液相下测量2组瘢痕组织硬度。取2组瘢痕组织,分离和培养Fb,采用倒置相差显微镜观察其形态,并采用细胞免疫荧光法检测桩蛋白的表达以反映细胞形态,采用细胞免疫荧光法检测促纤维化蛋白α平滑肌肌动蛋白(α-SMA)、转化生长因子β1(TGF-β1)和Ⅰ型胶原表达及机械力转导相关蛋白Yes相关蛋白(YAP)和增殖相关蛋白Ki67的表达,采用实时荧光定量反转录PCR法检测促纤维化基因TGF-β1、α-SMA和Ⅰ型胶原,抑制纤维化基因TGF-β3及机械力转导相关基因Rho相关激酶1(ROCK1)YAP mRNA表达。对数据行单因素方差分析、LSD-t检验。  结果  HE染色可见,正常皮肤表皮层凹凸不平,真皮层可见血管和汗腺等附属器;年轻组、年长组瘢痕组织表皮层均较为扁平,真皮层血管和汗腺等附属器罕见。Masson染色和扫描电子显微镜下可见,正常皮肤胶原纤维排列松散、无序,而2组瘢痕组织胶原纤维排列均较为致密、整齐,且年轻组瘢痕组织胶原纤维较年长组更为致密。年轻组、年长组瘢痕组织胶原含量明显高于正常皮肤组织(t=8.02、3.15,P<0.05或P<0.01),年长组瘢痕组织胶原含量明显低于年轻组(t=4.84,P<0.05)。年长组瘢痕组织真皮层硬度为(50.3±1.1)kPa,明显高于年轻组的(35.2±0.8)kPa(t=11.43,P<0.05)。2组瘢痕Fb在倒置相差显微镜下及经细胞免疫荧光法观察,在形态上无明显差异。年长组瘢痕Fb细胞质中Ⅰ型胶原和TGF-β1表达较年轻组明显升高,2组瘢痕Fb细胞质中α-SMA表达相近。年长组瘢痕Fb细胞质和细胞核中YAP表达较年轻组明显增多,2组瘢痕Fb细胞核中Ki67表达无明显差异。年长组瘢痕Fb中TGF-β1和Ⅰ型胶原mRNA表达量明显高于年轻组(t=2.87、4.85,P<0.05或P<0.01),TGF-β3 mRNA表达量明显低于年轻组(t=3.36,P<0.05),α-SMA mRNA表达量与年轻组无明显差异(t=1.14,P>0.05)。年长组瘢痕Fb中ROCK1YAP mRNA表达量明显高于年轻组(t=2.98、7.60,P<0.05或P<0.01)。  结论  年长者皮肤损伤后更容易发生瘢痕愈合,其分子机制可能是由于创面愈合过程中会产生硬度较高的细胞外基质成分使得组织硬度增加,从而激活ROCKYAP/转录共激活因子PDZ结合基序基因的表达,进而促进促纤维化基因和蛋白的表达。

     

  • 参考文献(36)

    [1] KirkwoodTB. Understanding the odd science of aging[J]. Cell, 2005,120(4):437-447.DOI: 10.1016/j.cell.2005.01.027.
    [2] BakerDJ, PetersenRC. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives[J]. J Clin Invest, 2018,128(4):1208-1216. DOI: 10.1172/JCI95145.
    [3] RamirezT, LiYM, YinS, et al. Aging aggravates alcoholic liver injury and fibrosis in mice by downregulating sirtuin 1 expression[J]. J Hepatol, 2017,66(3):601-609. DOI: 10.1016/j.jhep.2016.11.004.
    [4] ShusterS, BlackMM, Mc VitieE. The influence of age and sex on skin thickness, skin collagen and density[J]. Br J Dermatol, 1975,93(6):639-643. DOI: 10.1111/j.1365-2133.1975.tb05113.x.
    [5] MooreAL, MarshallCD, BarnesLA, et al. Scarless wound healing: transitioning from fetal research to regenerative healing[J]. Wiley interdiscip Rev Dev Biol, 2018,7(2): 10.1002/wdev.309. DOI: 10.1002/wdev.309.
    [6] WillyardC. Unlocking the secrets of scar-free skin healing[J]. Nature, 2018,563(7732):S86-88. DOI: 10.1038/d41586-018-07430-w.
    [7] SolonJ, LeventalI, SenguptaK, et al. Fibroblast adaptation and stiffness matching to soft elastic substrates[J]. Biophys J, 2007,93(12):4453-4461. DOI: 10.1529/biophysj.106.101386.
    [8] WellsRG. Tissue mechanics and fibrosis[J]. Biochim Biophys Acta, 2013,1832(7):884-890. DOI: 10.1016/j.bbadis.2013.02.007.
    [9] DasguptaI, McCollumD. Control of cellular responses to mechanical cues through YAP/TAZ regulation[J]. J Biol Chem, 2019,294(46):17693-17706. DOI: 10.1074/jbc.REV119.007963.
    [10] DupontS. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction[J]. Exp Cell Res, 2016,343(1):42-53. DOI: 10.1016/j.yexcr.2015.10.034.
    [11] LichtmanMK, Otero-VinasM, FalangaV. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis[J]. Wound Repair Regen, 2016,24(2):215-222. DOI: 10.1111/wrr.12398.
    [12] LiuF, LagaresD, ChoiKM, et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis[J]. Am J Physiol Lung Cell Mol Physiol, 2015,308(4):L344-357. DOI: 10.1152/ajplung.00300.2014.
    [13] SzetoSG, NarimatsuM, LuM, et al. YAP/TAZ are mechano- regulators of TGF-β-Smad signaling and renal fibrogenesis[J]. J Am Soc Nephrol, 2016,27(10):3117-3128.DOI: 10.1681/asn.2015050499.
    [14] AbramczykH, ImielaA, Brozek-PluskaB, et al. Advances in Raman imaging combined with AFM and fluorescence microscopy are beneficial for oncology and cancer research[J]. Nanomedicine (Lond), 2019,14(14):1873-1888. DOI: 10.2217/nnm-2018-0335.
    [15] BhushanB. Nanotribological and nanomechanical properties of skin with and without cream treatment using atomic force microscopy and nanoindentation[J]. J Colloid Interface Sci, 2012,367(1):1-33. DOI: 10.1016/j.jcis.2011.10.019.
    [16] StylianouA, LekkaM, StylianopoulosT. AFM assessing of nanomechanical fingerprints for cancer early diagnosis and classification: from single cell to tissue level[J]. Nanoscale, 2018,10(45):20930-20945. DOI: 10.1039/c8nr06146g.
    [17] GauglitzGG, KortingHC, PavicicT, et al. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies[J]. Mol Med, 2011,17(1/2):113-125. DOI: 10.2119/molmed.2009.00153.
    [18] PuglieseE, CoentroJQ, RaghunathM, et al. Wound healing and scar wars[J]. Adv Drug Deliv Rev, 2018,129:1-3. DOI: 10.1016/j.addr.2018.05.010.
    [19] 张波, 王正国, 朱佩芳. 皮肤无瘢痕愈合机制的研究进展[J]. 中华烧伤杂志, 2002,18(5):318-320.
    [20] KöseO, WaseemA. Keloids and hypertrophic scars: are they two different sides of the same coin?[J]. Dermatol Surg, 2008,34(3):336-346. DOI: 10.1111/j.1524-4725.2007.34067.x.
    [21] RittiéL, FisherGJ. Natural and sun-induced aging of human skin[J]. Cold Spring Harb Perspect Med, 2015,5(1):a015370. DOI: 10.1101/cshperspect.a015370.
    [22] GeorgesPC, HuiJJ, GombosZ, et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis[J]. Am J Physiol Gastrointest Liver Physiol, 2007,293(6):G1147-1154. DOI: 10.1152/ajpgi.00032.2007.
    [23] Viji BabuPK, RiannaC, BelgeG, et al. Mechanical and migratory properties of normal, scar, and Dupuytren's fibroblasts[J]. J Mol Recognit, 2018,31(9):e2719. DOI: 10.1002/jmr.2719.
    [24] TschumperlinDJ, LagaresD. Mechano-therapeutics: targeting mechanical signaling in fibrosis and tumor stroma[J]. Pharmacol Ther, 2020,212:107575. DOI: 10.1016/j.pharmthera.2020.107575.
    [25] TschumperlinDJ, LigrestiG, HilscherMB, et al. Mechanosensing and fibrosis[J]. J Clin Invest, 2018,128(1):74-84. DOI: 10.1172/JCI93561.
    [26] WuH, YuY, HuangH, et al. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells[J]. Cell, 2020,180(1):107-121.e17. DOI: 10.1016/j.cell.2019.11.027.
    [27] YaoB, ZhuDZ, CuiXL, et al. Modeling human hypertrophic scars with 3D preformed cellular aggregates bioprinting[J]. Bioactive Materials, 2021,In press. DOI: 10.1016/j.bioactmat.2021.09.004.
    [28] HinzB. Myofibroblasts[J]. Exp Eye Res, 2016,142:56-70. DOI: 10.1016/j.exer.2015.07.009.
    [29] HinzB, McCullochCA, CoelhoNM. Mechanical regulation of myofibroblast phenoconversion and collagen contraction[J]. Exp Cell Res, 2019,379(1):119-128.DOI: 10.1016/j.yexcr.2019.03.027.
    [30] KnipeRS, ProbstCK, LagaresD, et al. The Rho kinaseis oforms ROCK1 and ROCK2 each contribute to the development of experimental pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2018,58(4):471-481. DOI: 10.1165/rcmb.2017-0075OC.
    [31] ShiJ, SurmaM, YangY, et al. Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging[J]. FASEB J, 2019,33(6):7348-7362. DOI: 10.1096/fj.201802510R.
    [32] ZhouY, HuangX, HeckerL, et al. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis[J]. J Clin Invest, 2013,123(3):1096-1108. DOI: 10.1172/JCI66700.
    [33] NoguchiS, SaitoA, NagaseT. YAP/TAZ signaling as a molecular link between fibrosis and cancer[J]. Int J Mol Sci, 2018,19(11):3674. DOI: 10.3390/ijms19113674.
    [34] Picollet-D'hahanN, DolegaME, LiguoriL, et al. A 3D toolbox to enhance physiological relevance of human tissue models[J]. Trends Biotechnol, 2016,34(9):757-769.DOI: 10.1016/j.tibtech.2016.06.012.
    [35] YanWC, DavoodiP, VijayavenkataramanS, et al. 3D bioprinting of skin tissue: from pre-processing to final product evaluation[J]. Adv Drug Deliv Rev, 2018,132:270-295.DOI: 10.1016/j.addr.2018.07.016.
    [36] 朱冬振, 王一惠, 王睿, 等. 外源性肿瘤坏死因子α对三维环境下小鼠间充质干细胞向汗腺细胞分化的影响及机制[J]. 中华烧伤杂志, 2020,36(3):187-194. DOI: 10.3760/cma.j.cn501120-20200105-00005.
  • 1  植皮术患者正常皮肤和2组增生性瘢痕患者瘢痕组织形态 苏木精-伊红×100,图中标尺为500 μm。1A.正常皮肤组织褶皱较为明显,表皮基底层凹凸不平,真皮层可见血管和汗腺等附属器;1B.年轻组瘢痕组织表皮层扁平,表皮基底层正常棘突消失,真皮层血管和汗腺等附属器罕见;1C.年长组瘢痕组织结构与图1B相似

    2  植皮术正常皮肤和2组增生性瘢痕患者瘢痕组织真皮层胶原排列和分布 Masson×100,图中标尺为500 μm。2A.正常皮肤组织胶原排列松散、无序;2B.年轻组瘢痕组织胶原排列致密且有序;2C.年长组瘢痕组织皮肤胶原排列有序,但较图2B稀疏且胶原含量减少

    3  患者正常皮肤和2组瘢痕组织胶原含量比较(x¯±s,样本数为3)

    注:与正常皮肤比较,aP<0.01,bP<0.05;与年轻组比较,cP<0.05

    4  植皮术患者正常皮肤和2组增生性瘢痕患者瘢痕组织真皮层胶原纤维微观形态 扫描电子显微镜×500,图中标尺为200 μm。4A.正常皮肤组织胶原纤维排列松散、无序并相互交织;4B.年轻组瘢痕组织真皮层胶原纤维致密且排列有序;4C.年长组瘢痕组织皮肤胶原纤维聚集成束,且排列有序,但较图4B稀疏

    5  2组人瘢痕成纤维细胞形态学观察。5A、5B.分别为年轻组和年长组细胞形态,2组细胞均呈梭形并聚集呈巢状 倒置相差显微镜×50,图中标尺为500 μm;5C、5D.分别为年轻组和年长组细胞形态,2组细胞均呈多边形,相互重叠,并向周围伸展,细胞核呈圆形或椭圆形 Alexa Fluor 594-4',6-二脒基-2-苯基吲哚×400,图中标尺为100 μm

    注:细胞核阳性染色为蓝色,桩蛋白阳性染色为红色

    6  2组人瘢痕成纤维细胞中α-SMA、Ⅰ型胶原和TGF-β1蛋白的表达 Alexa Fluor 488-4',6-二脒基-2-苯基吲哚×100,图中标尺为100 μm。6A、6B、6C.分别为年轻组细胞质中α-SMA、Ⅰ型胶原和TGF-β1的表达;6D、6E、6F.分别为年长组细胞质中α-SMA、Ⅰ型胶原和TGF-β1的表达,α-SMA的表达与图6A相近,Ⅰ型胶原的表达较图6B明显增加,TGF-β1的表达较图6C明显增加

    注:细胞核阳性染色为蓝色,α平滑肌肌动蛋白(α-SMA)、Ⅰ型胶原和转化生长因子β1(TGF-β1)阳性染色均为绿色

    7  2组人瘢痕成纤维细胞中YAP和Ki67蛋白的表达 Alexa Fluor 488-4',6-二脒基-2-苯基吲哚×400,图中标尺为100 μm。7A、7B.分别为年轻组和年长组,YAP蛋白广泛分布于细胞质和细胞核,且图7B中YAP蛋白较图7A增加;7C、7D.分别为年轻组和年长组,Ki67蛋白分布于细胞核,且图7D中Ki67蛋白表达与图7C无明显差异

    注:细胞核阳性染色为蓝色,Yes相关蛋白(YAP)和Ki67阳性染色均为绿色

    8  实时荧光定量反转录PCR法检测2组人瘢痕成纤维细胞中纤维化相关基因和机械力转导相关基因的表达(x¯±s,样本数为3)

    注:TGF为转化生长因子,α-SMA为α平滑肌肌动蛋白,ROCK1为Rho相关激酶1,YAP为Yes相关蛋白;与年轻组比较,aP<0.05,bP<0.01

    表1  实时荧光定量反转录PCR检测2组患者瘢痕成纤维细胞中纤维化相关基因和机械力转导相关基因的表达

    基因名称引物序列(5’→3’)产物大小(bp)
    GAPDH上游:GGAGCGAGATCCCTCCAAAAT197
    下游:GGCTGTTGTCATACTTCTCATGG
    TGF-β1上游:CAATTCCTGGCGATACCTCAG86
    下游:GCACAACTCCGGTGACATCAA
    TGF-β3上游:ACTTGCACCACCTTGGACTTC114
    下游:GGTCATCACCGTTGGCTCA
    α-SMA上游:GTGTTGCCCCTGAAGAGCAT116
    下游:GCTGGGACATTGAAAGTCTCA
    Ⅰ型胶原上游:GAGGGCCAAGACGAAGACATC140
    下游:CAGATCACGTCATCGCACAAC
    YAP上游:TAGCCCTGCGTAGCCAGTTA177
    下游:TCATGCTTAGTCCACTGTCTGT
    ROCK1上游:AACATGCTGCTGGATAAATCTGG93
    下游:TGTATCACATCGTACCATGCCT
    注:GAPDH为3-磷酸甘油醛脱氢酶,TGF为转化生长因子,α-SMA为α平滑肌肌动蛋白,YAP为Yes相关蛋白,ROCK1为Rho相关激酶1
    下载: 导出CSV
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  176
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10

目录

    /

    返回文章
    返回