留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物力学微环境通过调控细胞迁移促进创面修复的研究进展

冷敏 彭颖 汪虹

冷敏, 彭颖, 汪虹. 生物力学微环境通过调控细胞迁移促进创面修复的研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(1): 90-94. DOI: 10.3760/cma.j.cn501120-20200921-00419.
引用本文: 冷敏, 彭颖, 汪虹. 生物力学微环境通过调控细胞迁移促进创面修复的研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(1): 90-94. DOI: 10.3760/cma.j.cn501120-20200921-00419.
Leng M,Peng Y,Wang H.Research advances on the biomechanical microenvironment facilitated wound repair through the regulation of cell migration[J].Chin J Burns Wounds,2022,38(1):90-94.DOI: 10.3760/cma.j.cn501120-20200921-00419.
Citation: Leng M,Peng Y,Wang H.Research advances on the biomechanical microenvironment facilitated wound repair through the regulation of cell migration[J].Chin J Burns Wounds,2022,38(1):90-94.DOI: 10.3760/cma.j.cn501120-20200921-00419.

生物力学微环境通过调控细胞迁移促进创面修复的研究进展

doi: 10.3760/cma.j.cn501120-20200921-00419
基金项目: 

国家自然科学基金地区科学基金项目 81660321

详细信息
    通讯作者:

    汪虹,Email:1953602234@qq.com

Research advances on the biomechanical micro- environment facilitated wound repair through the regulation of cell migration

Funds: 

Regional Science Foundation Project of National Natural Science Foundation of China 81660321

More Information
  • 摘要: 生物力学微环境是指细胞外的力学微环境中的多种力学信号,其会随着时间和空间发生相应的变化,在细胞迁移、增殖和分化等组织学改变中起着重要作用,并可进一步影响创面愈合。创面愈合是一个复杂的病理生理过程,其中细胞能否高效并快速地往创面中心迁移是影响创面愈合的重要因素之一。既往研究表明,生物力学微环境不仅可诱导细胞进行定向迁移,还可提高细胞的迁移速度。在复杂的自然环境中,细胞采取多种迁移模式,且受局部肌球蛋白收缩性和细胞外微环境等特殊模式支配;除了克服细胞外屏障,细胞还需通过局部物理机械力和信号与邻近的细胞和组织进行相互作用完成迁移,从而加速创面愈合。因此,近年来国内外学者都在积极研发各种基于改善生物力学微环境的生物材料,以期进一步促进细胞迁移从而加速创面愈合。本文就近年来生物力学微环境通过调控细胞迁移促进创面修复及相关生物材料开发的研究进展进行综述。

     

  • 参考文献(49)

    [1] 陈孝强 负压创面治疗调控皮肤力学微环境促进创面愈合的机制研究 西安 空军军医大学 2019 DOI: 10.27002/d.cnki.gsjyu.2019.000096

    陈孝强.负压创面治疗调控皮肤力学微环境促进创面愈合的机制研究[D].西安:空军军医大学,2019.DOI:10.27002/d.cnki.gsjyu.2019.000096.

    [2] 陈孝强,张伟,李学拥.负压伤口疗法促进创面愈合的生物力学效应研究进展[J].中华烧伤杂志,2018,34(4):243-246.DOI: 10.3760/cma.j.issn.1009-2587.2018.04.010.
    [3] PullarJM,CarrAC,VissersM.The roles of vitamin C in skin health[J].Nutrients,2017,9(8):866.DOI: 10.3390/nu9080866.
    [4] 王宏宇,刘玲英,巴特.间充质干细胞源性外泌体在创面修复中的研究进展[J/CD].中华损伤与修复杂志:电子版,2020,15(1):67-69.DOI: 10.3877/cma.j.issn.1673-9450.2020.01.012.
    [5] 邓呈亮,姚远镇,刘志远,等.2型糖尿病患者脂肪源性间充质干细胞对小鼠压疮创面愈合的影响[J].中华烧伤杂志,2019,35(1):40-47.DOI: 10.3760/cma.j.issn.1009-2587.2019.01.008.
    [6] 王澜,刘刚,李哲,等.富血小板纤维蛋白在合并潜行皮下窦道的慢性创面治疗中的临床应用[J].中华烧伤杂志,2018,34(9):637-642.DOI: 10.3760/cma.j.issn.1009-2587.2018.09.014.
    [7] MaromA,BerkovitchY,ToumeS,et al.Non-damaging stretching combined with sodium pyruvate supplement accelerate migration of fibroblasts and myoblasts during gap closure[J].Clin Biomech (Bristol, Avon),2019,62:96-103.DOI: 10.1016/j.clinbiomech.2019.01.009.
    [8] van den BergM,MacCarthy-MorroghL,CarterD,et al.Proteolytic and opportunistic breaching of the basement membrane zone by immune cells during tumor initiation[J].Cell Rep,2019,27(10):2837-2846.e4.DOI: 10.1016/j.celrep.2019.05.029.
    [9] SherwoodDR,PlastinoJ.Invading, leading and navigating cells in caenorhabditis elegans: insights into cell movement in vivo[J].Genetics,2018,208(1):53-78.DOI: 10.1534/genetics.117.300082.
    [10] NerurkarNL,LeeC,MahadevanL,et al.Molecular control of macroscopic forces drives formation of the vertebrate hindgut[J].Nature,2019,565(7740):480-484.DOI: 10.1038/s41586-018-0865-9.
    [11] KelleyLC,ChiQ,CáceresR,et al.Adaptive F-actin polymerization and localized ATP production drive basement membrane invasion in the absence of MMPs[J].Dev Cell,2019,48(3):313-328.e8.DOI: 10.1016/j.devcel.2018.12.018.
    [12] GlentisA,OertleP,MarianiP,et al.Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane[J].Nat Commun,2017,8(1):924.DOI: 10.1038/s41467-017-00985-8.
    [13] LadouxB,MègeRM.Mechanobiology of collective cell behaviours[J].Nat Rev Mol Cell Biol,2017,18(12):743-757.DOI: 10.1038/nrm.2017.98.
    [14] TamadaM,PerezTD,NelsonWJ,et al.Two distinct modes of myosin assembly and dynamics during epithelial wound closure[J].J Cell Biol,2007,176(1):27-33.DOI: 10.1083/jcb.200609116.
    [15] LehtimäkiJ,HakalaM,LappalainenP.Actin filament structures in migrating cells[J].Handb Exp Pharmacol, 2017,235:123-152.DOI: 10.1007/164_2016_28.
    [16] Abreu-BlancoMT,VerboonJM,LiuR,et al.Drosophila embryos close epithelial wounds using a combination of cellular protrusions and an actomyosin purse string[J].J Cell Sci,2012,125(Pt 24):5984-5997.DOI: 10.1242/jcs.109066.
    [17] KobbAB,Zulueta-CoarasaT,Fernandez-GonzalezR.Tension regulates myosin dynamics during Drosophila embryonic wound repair[J].J Cell Sci,2017,130(4):689-696.DOI: 10.1242/jcs.196139.
    [18] ShindoA,AudreyA,TakagishiM,et al.Septin-dependent remodeling of cortical microtubule drives cell reshaping during epithelial wound healing[J].J Cell Sci,2018,131(12):jcs212647.DOI: 10.1242/jcs.212647.
    [19] Zulueta-CoarasaT, Fernandez-GonzalezR. Dynamic force patterns promote collective cell movements during embryonic wound repair[J]. Nature Phys, 2018,14:750-758.DOI: 10.1038/s41567-018-0111-2.
    [20] FriedlP,GilmourD.Collective cell migration in morphogenesis, regeneration and cancer[J].Nat Rev Mol Cell Biol,2009,10(7):445-457.DOI: 10.1038/nrm2720.
    [21] TrappmannB,BakerBM,PolacheckWJ,et al.Matrix degradability controls multicellularity of 3D cell migration[J].Nat Commun,2017,8(1):371.DOI: 10.1038/s41467-017-00418-6.
    [22] VigDK,HambyAE,WolgemuthCW.Cellular contraction can drive rapid epithelial flows[J].Biophys J,2017,113(7):1613-1622.DOI: 10.1016/j.bpj.2017.08.004.
    [23] YangY,JollyMK,LevineH.Computational modeling of collective cell migration: mechanical and biochemical aspects[J].Adv Exp Med Biol,2019,1146:1-11.DOI: 10.1007/978-3-030-17593-1_1.
    [24] FriedlP,MayorR.Tuning collective cell migration by cell-cell junction regulation[J].Cold Spring Harb Perspect Biol,2017,9(4):a029199.DOI: 10.1101/cshperspect.a029199.
    [25] ManeshiMM,ZieglerL,SachsF,et al.Enantiomeric Aβ peptides inhibit the fluid shear stress response of PIEZO1[J].Sci Rep,2018,8(1):14267.DOI: 10.1038/s41598-018-32572-2.
    [26] AjetiV,TabatabaiAP,FleszarAJ,et al.Wound healing coordinates actin architectures to regulate mechanical work[J].Nat Phys,2019,15:696-705.DOI: 10.1038/s41567-019-0485-9.
    [27] BarrigaEH,MayorR.Adjustable viscoelasticity allows for efficient collective cell migration[J].Semin Cell Dev Biol,2019,93:55-68.DOI: 10.1016/j.semcdb.2018.05.027.
    [28] CurranS,StrandkvistC,BathmannJ,et al.Myosin Ⅱ controls junction fluctuations to guide epithelial tissue ordering[J].Dev Cell,2017,43(4):480-492.e6.DOI: 10.1016/j.devcel.2017.09.018.
    [29] TetleyRJ,MaoY.The same but different: cell intercalation as a driver of tissue deformation and fluidity[J].Philos Trans R Soc Lond B Biol Sci,2018,373(1759):20170328.DOI: 10.1098/rstb.2017.0328.
    [30] TetleyRJ,StaddonMF,HellerD,et al.Tissue fluidity promotes epithelial wound healing[J].Nat Phys,2019,15(11):1195-1203.DOI: 10.1038/s41567-019-0618-1.
    [31] StaddonMF,BiD,TabatabaiAP,et al.Cooperation of dual modes of cell motility promotes epithelial stress relaxation to accelerate wound healing[J].PLoS Comput Biol,2018,14(10):e1006502.DOI: 10.1371/journal.pcbi.1006502.
    [32] HaageA,GoodwinK,WhitewoodA,et al.Talin autoinhibition regulates cell-ECM adhesion dynamics and wound healing in vivo[J].Cell Rep,2018,25(9):2401-2416.e5.DOI: 10.1016/j.celrep.2018.10.098.
    [33] AndasariV,LüD,SwatM,et al.Computational model of wound healing: EGF secreted by fibroblasts promotes delayed re-epithelialization of epithelial keratinocytes[J].Integr Biol (Camb),2018,10(10):605-634.DOI: 10.1039/c8ib00048d.
    [34] GovindarajuP,ToddL,ShetyeS,et al.CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing[J].Matrix Biol,2019,75/76:314-330.DOI: 10.1016/j.matbio.2018.06.004.
    [35] WisdomKM,AdebowaleK,ChangJ,et al.Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments[J].Nat Commun,2018,9(1):4144.DOI: 10.1038/s41467-018-06641-z.
    [36] MuellerJ,SzepG,NemethovaM,et al.Load adaptation of lamellipodial actin networks[J].Cell,2017,171(1):188-200.e16.DOI: 10.1016/j.cell.2017.07.051.
    [37] WangWY,DavidsonCD,LinD,et al.Actomyosin contractility-dependent matrix stretch and recoil induces rapid cell migration[J].Nat Commun,2019,10(1):1186.DOI: 10.1038/s41467-019-09121-0.
    [38] YamadaKM,SixtM.Mechanisms of 3D cell migration[J].Nat Rev Mol Cell Biol,2019,20(12):738-752.DOI: 10.1038/s41580-019-0172-9.
    [39] VishwakarmaM,Di RussoJ,ProbstD,et al.Mechanical interactions among followers determine the emergence of leaders in migrating epithelial cell collectives[J].Nat Commun,2018,9(1):3469.DOI: 10.1038/s41467-018-05927-6.
    [40] SparksHD,SigaevaT,TarrafS,et al.Biomechanics of wound healing in an equine limb model: effect of location and treatment with a peptide-modified collagen-chitosan hydrogel[J].ACS Biomater Sci Eng,2021,7(1):265-278.DOI: 10.1021/acsbiomaterials.0c01431.
    [41] NiemiecSM,LouiselleAE,HiltonSA,et al.Nanosilk increases the strength of diabetic skin and delivers CNP-miR146a to improve wound healing[J].Front Immunol,2020,11:590285.DOI: 10.3389/fimmu.2020.590285.
    [42] HanF,ZhangP,ChenT,et al.A LbL-assembled bioactive coating modified nanofibrous membrane for rapid tendon-bone healing in ACL reconstruction[J].Int J Nanomedicine,2019,14:9159-9172.DOI: 10.2147/IJN.S214359.
    [43] HouJ,ChenL,ZhouM,et al.Multi-layered polyamide/collagen scaffolds with topical sustained release of N-acetylcysteine for promoting wound healing[J].Int J Nanomedicine,2020,15:1349-1361.DOI: 10.2147/IJN.S232190.
    [44] Safaee-ArdakaniMR,Hatamian-ZarmiA,SadatSM,et al.Electrospun Schizophyllan/polyvinyl alcohol blend nanofibrous scaffold as potential wound healing[J].Int J Biol Macromol,2019,127:27-38.DOI: 10.1016/j.ijbiomac.2018.12.256.
    [45] BabithaS,KorrapatiPS.Biodegradable zein-polydopamine polymeric scaffold impregnated with TiO2 nanoparticles for skin tissue engineering[J].Biomed Mater,2017,12(5):055008.DOI: 10.1088/1748-605X/aa7d5a.
    [46] AugustineR,HasanA,PatanNK,et al.Titanium nanorods loaded PCL meshes with enhanced blood vessel formation and cell migration for wound dressing applications[J].Macromol Biosci,2019,19(7):e1900058.DOI: 10.1002/mabi.201900058.
    [47] XiLoh EY,FauziMB,NgMH,et al.Cellular and molecular interaction of human dermal fibroblasts with bacterial nanocellulose composite hydrogel for tissue regeneration[J].ACS Appl Mater Interfaces,2018,10(46):39532-39543.DOI: 10.1021/acsami.8b16645.
    [48] QianZ,WangH,BaiY,et al.Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release[J].ACS Appl Mater Interfaces,2020,12(50):55659-55674.DOI: 10.1021/acsami.0c17142.
    [49] YuanR,YangN,FanS,et al.Biomechanical motion-activated endogenous wound healing through LBL self-powered nanocomposite repairer with ph-responsive anti-inflammatory effect[J].Small,2021,17(50):e2103997.DOI: 10.1002/smll.202103997.
  •   《中华烧伤与创面修复杂志》第六届编辑委员会特约通讯员名单按姓氏拼音排序

    卞惠娟 陈宾 陈蕾 陈泽林 陈郑礼 褚志刚 邓欢 丁华荣 丁羚涛 窦懿
    杜伟力 段伟强 樊桂成 樊华 付妍婕 高欣欣 郭菲 郭峰 胡少华 黄广涛
    黄晓琴 黄勇 黄志锋 江琼 江旭品 蒋南红 李海胜 李华涛 李洁 李科
    李娜 李伟人 李正勇 林佳佳 刘竣彰 刘名倬 刘锐 刘腾飞 卢才教 罗锦花
    罗鹏飞 苗盈盈 缪玉兰 彭源 钱卫 阮琼芳 舒斌 宋玫 苏琳琳 田彭
    王春华 王峰 王洪瑾 王坤 王亚荣 王燕妮 王野 王玉振 王耘川 王志勇
    温春泉 吴英 肖斌 肖海涛 谢春晖 薛刚 杨光 杨子晨 有传刚 张琮
    张伟 章祥洲 赵筱卓 赵遵江 郑兴锋 朱美抒 朱志军
    下载: 导出CSV
  • 加载中
表(1)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  173
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-21

目录

    /

    返回文章
    返回