留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人脂肪间充质干细胞外泌体对小鼠RAW264.7细胞的炎症反应和小鼠全层皮肤缺损创面愈合的影响

沈括 王许杰 刘开拓 李少珲 李晋 张锦鑫 王洪涛 胡大海

沈括, 王许杰, 刘开拓, 等. 人脂肪间充质干细胞外泌体对小鼠RAW264.7细胞的炎症反应和小鼠全层皮肤缺损创面愈合的影响[J]. 中华烧伤与创面修复杂志, 2022, 38(3): 215-226. DOI: 10.3760/cma.j.cn501120-20201116-00477.
引用本文: 沈括, 王许杰, 刘开拓, 等. 人脂肪间充质干细胞外泌体对小鼠RAW264.7细胞的炎症反应和小鼠全层皮肤缺损创面愈合的影响[J]. 中华烧伤与创面修复杂志, 2022, 38(3): 215-226. DOI: 10.3760/cma.j.cn501120-20201116-00477.
Shen K,Wang XJ,Liu KT,et al.Effects of exosomes from human adipose-derived mesenchymal stem cells on inflammatory response of mouse RAW264.7 cells and wound healing of full-thickness skin defects in mice[J].Chin J Burns Wounds,2022,38(3):215-226.DOI: 10.3760/cma.j.cn501120-20201116-00477.
Citation: Shen K,Wang XJ,Liu KT,et al.Effects of exosomes from human adipose-derived mesenchymal stem cells on inflammatory response of mouse RAW264.7 cells and wound healing of full-thickness skin defects in mice[J].Chin J Burns Wounds,2022,38(3):215-226.DOI: 10.3760/cma.j.cn501120-20201116-00477.

人脂肪间充质干细胞外泌体对小鼠RAW264.7细胞的炎症反应和小鼠全层皮肤缺损创面愈合的影响

doi: 10.3760/cma.j.cn501120-20201116-00477
基金项目: 

国家自然科学基金重点项目 81530064

国家自然科学基金面上项目 81971835, 81772071

详细信息
    通讯作者:

    胡大海,Email:hudhai@fmmu.edu.cn

Effects of exosomes from human adipose-derived mesenchymal stem cells on inflammatory response of mouse RAW264.7 cells and wound healing of full-thickness skin defects in mice

Funds: 

Key Program of National Natural Science Foundation of China 81530064

General Program of National Natural Science Foundation of China 81971835, 81772071

More Information
    Corresponding author: Hu Dahai, Email: hudhai@fmmu.edu.cn
  • 摘要:   目的  探讨人脂肪间充质干细胞(ADSC)外泌体对小鼠RAW264.7细胞介导的炎症反应和小鼠全层皮肤缺损创面愈合的影响。  方法  采用实验研究方法。取2020年6—9月于空军军医大学第一附属医院行腹部手术的3例女性患者(10~25岁)废弃脂肪组织,采用Ⅰ型胶原酶消化法提取ADSC,采用流式细胞术进行鉴定。使用差速超高速离心法提取人ADSC外泌体,采用透射电子显微镜观察形态,纳米颗粒跟踪分析仪检测粒径,蛋白质印迹法检测CD9、CD63、肿瘤易感基因101(TSG101)和β肌动蛋白的蛋白表达。将人ADSC外泌体与RAW264.7细胞共培养12 h后,观察RAW264.7细胞对人ADSC外泌体的吞噬情况。将RAW264.7细胞分为采用磷酸盐缓冲液(PBS)刺激适宜时间的PBS组及内毒素/脂多糖(LPS)刺激相应时间点的LPS刺激2 h组、LPS刺激4 h组、LPS刺激6 h组、LPS刺激12 h组、LPS刺激24 h组,每组3孔,采用实时荧光定量反转录PCR(RT-PCR)法检测白细胞介素1β(IL-1β)、肿瘤坏死因子α(TNF-α)、IL-6及IL-10的mRNA表达。将RAW264.7细胞分为PBS组、单纯LPS组、LPS+ADSC外泌体组,每组3孔,按前一实验筛选的时间进行相应刺激,采用实时荧光定量RT-PCR法检测IL-1β、TNF-α、IL-6、IL-10、转化生长因子β(TGF-β)及血管内皮生长因子(VEGF)mRNA表达,采用蛋白质印迹法检测诱导型一氧化氮合酶(iNOS)、精氨酸酶1(Arg1)的蛋白表达。取24只8周龄雄性BALB/c小鼠,采用随机数字表法分为ADSC外泌体组和PBS组,每组12只,在背部造成1 cm×1 cm的全层皮肤缺损创面。伤后即刻,2组小鼠创面分别进行相应的处理。伤后1 d,采用酶联免疫吸附测定法检测血清中IL-1β和TNF-α的浓度,采用实时荧光定量RT-PCR法检测创面组织IL-1β、TNF-α及IL-6的mRNA表达。伤后3、6、9、12、15 d观察创面愈合情况,并计算创面未愈合率;伤后15 d,行苏木精-伊红染色和Masson染色,分别检测创面皮肤附件缺损长度及胶原容积分数(CVF);免疫组织化学法检测创面CD31表达及血管新生情况;免疫荧光法检测创面Ki67阳性细胞比、iNOS和Arg1双阳性细胞比、iNOS阳性细胞和Arg1阳性细胞的比值及两者的荧光强度。动物实验中样本数均为6。对数据行重复测量方差分析、单因素方差分析、独立样本t检验。  结果  培养12 h,细胞呈典型梭形结构,经流式细胞术鉴定为ADSC。外泌体呈囊泡状,粒径29~178 nm,表达CD9、CD63及TSG101而不表达β肌动蛋白。共培养12 h后,人ADSC外泌体成功被RAW264.7细胞吞入细胞质。LPS刺激2 h组、LPS刺激4 h组、LPS刺激6 h组、LPS刺激12 h组、LPS刺激24 h组RAW264.7细胞IL-1β、TNF-α、IL-6、IL-10 mRNA表达均明显高于PBS组(t值分别为39.10、14.55、28.80、4.74,48.80、22.97、13.25、36.34,23.12、18.71、29.19、41.08,11.68、18.06、8.54、43.45,62.31、22.52、21.51、37.13,P<0.01),选择各种炎症因子表达均高表达的刺激12 h作为后续实验时间点。刺激12 h后,单纯LPS组RAW264.7细胞IL-1β、TNF-α、IL-6、IL-10 mRNA表达均明显高于PBS组(t值分别为44.20、51.26、14.71、8.54,P<0.01);LPS+ADSC外泌体组RAW264.7细胞IL-1β、TNF-α、IL-6 mRNA表达均明显低于单纯LPS组(t值分别为22.89、25.51、8.03,P<0.01),而IL-10、TGF-β和VEGF mRNA表达均明显高于单纯LPS组(t值分别9.89、13.12、7.14,P<0.01)。刺激12 h后,单纯LPS组RAW264.7细胞iNOS的蛋白表达明显高于PBS组和LPS+ADSC外泌体组(t值分别为11.20、5.06,P<0.05或P<0.01),Arg1蛋白表达明显低于LPS+ADSC外泌体组(t=15.01,P<0.01)。伤后1 d,ADSC外泌体组小鼠血清中IL-1β和TNF-α浓度及创面组织中IL-1β、TNF-α、IL-6 mRNA表达均明显低于PBS组(t值分别为15.44、12.24,9.24、7.12、10.62,P<0.01)。伤后3、6、9、12、15 d,ADSC外泌体组小鼠创面未愈合率分别为(73.2±4.1)%、(53.8±3.8)%、(42.1±5.1)%、(24.1±2.8)%、0,均分别明显低于PBS组的(82.5±3.8)%、(71.2±4.6)%、(52.9±4.1)%、(41.5±3.6)%、(14.8±2.5)%(t值分别为4.77、8.93、5.54、7.63、7.59,P<0.01)。伤后15 d,PBS组小鼠创面皮肤附件缺损长度明显长于ADSC外泌体组(t=9.50,P<0.01),CVF明显低于ADSC外泌体组(t=9.15,P<0.01)。伤后15 d,ADSC外泌体组小鼠创面组织CD31阳性表达和新生血管数(t=12.99,P<0.01)明显多于PBS组,Ki67阳性细胞比明显高于PBS组(t=7.52,P<0.01)。伤后15 d,PBS组小鼠创面组织iNOS和Arg1双阳性细胞比为(12.33±1.97)%,明显高于ADSC外泌体组的(1.78±0.29)%(t=13.04,P<0.01),且iNOS荧光强度明显强于ADSC外泌体组,Arg1荧光强度明显强于ADSC外泌体组,iNOS阳性细胞和Arg1阳性细胞的比值明显高于ADSC外泌体组(t=35.16,P<0.01)。  结论  人ADSC外泌体可以减轻小鼠RAW264.7细胞的炎症反应,在小鼠全层皮肤缺损创面中减少巨噬细胞浸润和促炎性细胞因子分泌,增加抗炎细胞因子分泌,促进新生血管形成,增强创面细胞增殖,加速创面愈合。

     

  • 1  原代人脂肪间充质干细胞培养12 h呈梭形,生长密集后呈漩涡状排列 倒置相差显微镜×20

    2  用3种方法行人采脂肪间充质干细胞(ADSC)外泌体鉴定。2A.可见清晰的囊泡状结构,大小分布均匀 透射电子显微镜×40 000;2B.纳米颗粒跟踪分析仪检测显示粒径为29~178 nm;2C.蛋白质印迹法检测外泌体特异性标志物蛋白表达情况,CD9、CD63及TSG101表达为阳性,β肌动蛋白表达为阴性

    注:图2B为横坐标经过lg处理的数据形成的描记图;图2C上方1、2分别为人ADSC外泌体和人ADSC,TSG101为肿瘤易感基因101

    3  共培养12 h后,小鼠RAW264.7细胞吞噬人脂肪间充质干细胞(ADSC)外泌体 PKH26-4',6-二脒基-2-苯基吲哚(DAPI)×200。3A.RAW264.7细胞核DAPI染色为蓝色;3B.PKH26标记的人ADSC外泌体染色为红色;3C.细胞核和人ADSC外泌体共染,人ADSC外泌体成功被RAW264.7细胞吞入细胞质

    4  蛋白质印迹法检测3组小鼠RAW264.7细胞刺激12 h后特异性标志物蛋白表达水平

    注:iNOS为诱导型一氧化氮合酶,Arg1为精氨酸酶1;条带上方的1、2、3分别为磷酸盐缓冲液组、单纯内毒素/脂多糖(LPS)组和LPS+脂肪间充质干细胞外泌体组

    5  2组全层皮肤缺损小鼠伤后各时间点创面情况。5A、5B、5C、5D、5F、5F.分别为磷酸盐缓冲液组伤后0(即刻)、3、6、9、12、15 d创面情况;5G、5H、5I、5J、5K、5L.分别为脂肪间充质干细胞外泌体组伤后0、3、6、9、12、15 d创面情况,图5H、5I、5J、5K、5L创面面积分别明显小于图5B、5C、5D、5E、5F

    6  2组全层皮肤缺损小鼠伤后15 d创面上皮化情况 苏木精-伊红×20。6A、6B.分别为磷酸盐缓冲液组和人脂肪间充质干细胞外泌体组上皮化情况,图6B皮肤附件缺损长度明显短于图6A

    注:图中线段为皮肤附件缺损长度

    7  2组全层皮肤缺损小鼠伤后15 d创面组织胶原沉积情况 Masson×100。 7A、7B.分别为磷酸盐缓冲液组和脂肪间充质干细胞外泌体组胶原沉积情况,图7B胶原沉积较图7A增加

    注:胶原染色为蓝色

    8  2组全层皮肤缺损小鼠伤后15 d创面组织CD31表达情况 二氨基联苯胺-苏木精×100。8A、8B.分别为磷酸盐缓冲液组和脂肪间充质干细胞外泌体组CD31表达情况,图8B中CD31表达较图8A明显增加

    注:CD31阳性细胞染色为棕色

    9  2组全层皮肤缺损小鼠伤后15 d创面组织细胞增殖情况 Alexa Fluor 594-4′,6-二脒基-2-苯基吲哚×200。9A、9B.分别为磷酸盐缓冲液组和脂肪间充质干细胞外泌体组细胞Ki67阳性细胞染色情况,图9B中Ki67阳性细胞明显多于图9A

    注:细胞核阳性染色为蓝色,Ki67阳性细胞染色为红色

    10  2组全层皮肤缺损小鼠伤后15 d创面巨噬细胞浸润情况 Alexa Fluor 594-异硫氰酸荧光素-4′,6-二脒基-2-苯基吲哚×200。10A.磷酸盐缓冲液组iNOS和Arg1染色;10B.脂肪间充质干细胞外泌体组iNOS和Arg1染色,图10B中Arg1荧光强度明显强于图10A,iNOS荧光强度明显弱于图10A

    注:细胞核阳性染色为蓝色,诱导型一氧化氮合酶(iNOS)阳性染色为绿色,精氨酸酶1(Arg1)阳性染色为红色

    表1  实时荧光定量反转录PCR法检测的小鼠RAW264.7细胞炎症因子的引物序列及产物大小

    基因名称引物序列(5'→3')产物大小(bp)
    IL-上游:CCCTGAACTCAACTGTGAAATAGCA114
    下游:CCCAAGTCAAGGGCTTGGAA
    IL-6上游:GGGACTGATGCTGGTGACAA448
    下游:TCCACGATTTCCCAGAGAACA
    IL-10上游:GATAGAGCGCAACAAGCAGAA144
    下游:CAGTGAGGCCCATACCAGAA
    TNF-α上游:ATACACTGGCCCGAGGGAAC225
    下游:CCACATCTCGGATCATGCTTTC
    β肌动蛋白上游:GTACGCCAACACAGTGCTG143
    下游:CGTCATACTCCTGCTTGCTG
    注:IL为白细胞介素,TNF为肿瘤坏死因子
    下载: 导出CSV

    表2  6组小鼠RAW264.7细胞中4种炎症因子mRNA表达比较(x¯±s

    组别样本数IL-1βTNF-αIL-6IL-10
    PBS组31.00±0.091.00±0.091.00±0.101.00±0.09
    LPS刺激2 h组31 200.24±53.1243.76±5.90899.43±54.767.18±1.05
    LPS刺激4 h组32 593.43±92.23253.43±19.693 986.43±521.7647.89±2.47
    LPS刺激6 h组34 033.24±302.75368.15±34.025 732.35±340.9853.32±3.09
    LPS刺激12 h组33 590.64±532.76439.34±42.455 384.16±1 092.0856.16±5.54
    LPS刺激24 h组32 987.75±83.23442.94±34.383 987.12±321.5448.42±0.47
    F62.62154.4159.26753.43
    P<0.001<0.001<0.001<0.001
    t139.1014.5528.804.74
    P1<0.001<0.001<0.0010.002
    t248.8022.9713.2536.34
    P2<0.001<0.001<0.001<0.001
    t323.1218.7129.1941.08
    P3<0.001<0.001<0.001<0.001
    t411.6818.068.5443.45
    P4<0.001<0.0010.001<0.001
    t562.3122.5221.5137.13
    P5<0.001<0.001<0.001<0.001
    注:磷酸盐缓冲液(PBS)组细胞刺激合适时间;LPS为内毒素/脂多糖、IL为白细胞介素、TNF-α为肿瘤坏死因子α;F值、P值为6组间各指标总体比较所得;t1值、P1值,t2值、P2值,t3值、P3值,t4值、P4值,t5值、P5值分别为LPS刺激2 h组、LPS刺激4 h组、LPS刺激6 h组、LPS刺激12 h组、LPS刺激24 h组与PBS组各指标比较所得
    下载: 导出CSV

    表3  3组小鼠RAW264.7细胞刺激12 h后6种炎症因子mRNA表达比较(x¯±s

    组别样本数IL-1βTNF-αIL-6IL-10TGF-βVEGF
    PBS组31.00±0.091.00±0.111.00±0.111.00±0.121.00±0.211.00±0.10
    单纯LPS组33 921.65±231.02423.47±21.066 432.98±1 231.3439.93±3.042.15±0.340.91±0.21
    LPS+ADSC外泌体组31 891.25±132.76213.46±13.182 921.90±452.7283.27±13.178.27±1.301.89±0.30
    F488.60656.8054.2685.1370.0715.43
    P<0.001<0.001<0.001<0.001<0.001<0.004
    t144.2051.2614.718.542.450.72
    P1<0.001<0.001<0.0010.0020.2700.870
    t222.8925.518.039.8913.127.14
    P2<0.001<0.0010.0030.001<0.0010.006
    注:PBS为磷酸盐缓冲液,LPS为内毒素/脂多糖,ADSC为脂肪间充质干细胞,IL为白细胞介素,TNF-α为肿瘤坏死因子α,TGF-β为转化生长因子β,VEGF为血管内皮生长因子;F值、P值为组间各指标总体比较所得;t1值、P1值,t2值、P2值分别为PBS组、LPS+ADSC外泌体组与单纯LPS组各指标比较所得
    下载: 导出CSV

    表4  3组小鼠RAW264.7细胞刺激12 h后特异性标志物蛋白表达水平比较(x¯±s

    组别样本数iNOSArg1
    PBS组31.00±0.101.00±0.09
    单纯LPS组32.25±0.250.87±0.06
    LPS+ADSC外泌体组31.48±0.201.83±0.15
    F31.4566.19
    P<0.001<0.001
    t111.202.06
    P1<0.0010.374
    t25.0615.01
    P20.027<0.001
    注:PBS为磷酸盐缓冲液,LPS为内毒素/脂多糖,ADSC为脂肪间充质干细胞,iNOS为诱导型一氧化氮合酶,Arg1为精氨酸酶1;F值、P值为组间各指标总体比较所得;t1值、P1值,t2值、P2值分别为PBS组、LPS+ADSC外泌体组与单纯LPS组各指标比较所得
    下载: 导出CSV

    表5  2组全层皮肤缺损小鼠伤后1 d创面组织中3种炎症因子mRNA表达比较(x¯±s

    组别样本数IL-1βTNF-αIL-6
    PBS组61.00±0.101.000±0.1811.00±0.13
    ADSC外泌体组60.56±0.060.683±0.0220.36±0.07
    t9.247.1210.62
    P<0.001<0.001<0.001
    注:PBS为磷酸盐缓冲液,ADSC为脂肪间充质干细胞,IL为白细胞介素,TNF-α为肿瘤坏死因子α
    下载: 导出CSV
  • [1] NussbaumSR,CarterMJ,FifeCE,et al.An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds[J].Value Health,2018,21(1):27-32.DOI: 10.1016/j.jval.2017.07.007.
    [2] SchultzG,BjarnsholtT,JamesGA,et al.Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds[J].Wound Repair Regen,2017,25(5):744-757.DOI: 10.1111/wrr.12590.
    [3] LiZ,MaitzP.Cell therapy for severe burn wound healing[J/OL].Burns Trauma,2018,6:13[2020-11-16].https://pubmed.ncbi.nlm.nih.gov/29854856/.DOI: 10.1186/s41038-018-0117-0.
    [4] BentleyC,HazeldineJ,GreigC,et al.Dehydroepiandrosterone: a potential therapeutic agent in the treatment and rehabilitation of the traumatically injured patient[J/OL].Burns Trauma,2019,7:26[2020-11-16].https://pubmed.ncbi.nlm.nih.gov/31388512/.DOI: 10.1186/s41038-019-0158-z.
    [5] HuP,YangQ,WangQ,et al.Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration[J/OL].Burns Trauma,2019,7:38[2020-11-16].https://pubmed.ncbi.nlm.nih.gov/31890717/.DOI: 10.1186/s41038-019-0178-8.
    [6] LiuT,QiuC,BenC,et al.One-step approach for full-thickness skin defect reconstruction in rats using minced split-thickness skin grafts with Pelnac overlay[J/OL].Burns Trauma,2019,7:19[2020-11-16].https://pubmed.ncbi.nlm.nih.gov/31413962/.DOI: 10.1186/s41038-019-0157-0.
    [7] CaiY,LiJ,JiaC,et al.Therapeutic applications of adipose cell-free derivatives: a review[J].Stem Cell Res Ther,2020,11(1):312.DOI: 10.1186/s13287-020-01831-3.
    [8] HongP,YangH,WuY,et al.The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review[J].Stem Cell Res Ther,2019,10(1):242.DOI: 10.1186/s13287-019-1358-y.
    [9] QiuH,LiuS,WuK,et al.Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: a review[J].J Cosmet Dermatol,2020,19(3):574-581.DOI: 10.1111/jocd.13215.
    [10] MaT,FuB,YangX,et al.Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing[J].J Cell Biochem,2019,120(6):10847-10854.DOI: 10.1002/jcb.28376.
    [11] YangC,LuoL,BaiX,et al.Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway[J].Arch Biochem Biophys,2020,681:108259.DOI: 10.1016/j.abb.2020.108259.
    [12] LiY, ZhangJ, ShiJ, et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis[J]. Stem Cell Res Ther, 2021,12(1): 221. DOI: 10.1186/s13287-021-02290-0.
    [13] ShiR,JinY,HuW,et al.Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy[J].Am J Physiol Cell Physiol,2020,318(5):C848-C856.DOI: 10.1152/ajpcell.00041.2020.
    [14] HanYD,BaiY,YanXL,et al.Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting[J].Biochem Biophys Res Commun,2018,497(1):305-312.DOI: 10.1016/j.bbrc.2018.02.076.
    [15] YuQ,WangD,WenX,et al.Adipose-derived exosomes protect the pulmonary endothelial barrier in ventilator-induced lung injury by inhibiting the TRPV4/Ca2+ signaling pathway[J].Am J Physiol Lung Cell Mol Physiol,2020,318(4):L723-L741.DOI: 10.1152/ajplung.00255.2019.
    [16] BaiY,HanYD,YanXL,et al.Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury[J].Biochem Biophys Res Commun,2018,500(2):310-317.DOI: 10.1016/j.bbrc.2018.04.065.
    [17] RochetteL,MaziniL,MalkaG,et al.The crosstalk of adipose-derived stem cells (ADSC), oxidative stress, and inflammation in protective and adaptive responses[J].Int J Mol Sci,2020,21(23):9262.DOI: 10.3390/ijms21239262.
    [18] KrugerMJ,ConradieMM,ConradieM,et al.ADSC-conditioned media elicit an ex vivo anti-inflammatory macrophage response[J].J Mol Endocrinol,2018,61(4):173-184.DOI: 10.1530/JME-18-0078.
    [19] JiangM,WangH,JinM,et al.Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization[J].Cell Physiol Biochem,2018,47(2):864-878.DOI: 10.1159/000490078.
    [20] ZhaoH,ShangQ,PanZ,et al.Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue[J].Diabetes,2018,67(2):235-247.DOI: 10.2337/db17-0356.
    [21] LiuZ,XuY,WanY,et al.Exosomes from adipose-derived mesenchymal stem cells prevent cardiomyocyte apoptosis induced by oxidative stress[J].Cell Death Discov,2019,5:79.DOI: 10.1038/s41420-019-0159-5.
    [22] BaiX,LiJ,LiL,et al.Extracellular vesicles from adipose tissue-derived stem cells affect notch-miR148a-3p axis to regulate polarization of macrophages and alleviate sepsis in mice[J].Front Immunol,2020,11:1391.DOI: 10.3389/fimmu.2020.01391.
    [23] DengS,ZhouX,GeZ,et al.Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization[J].Int J Biochem Cell Biol,2019,114:105564.DOI: 10.1016/j.biocel.2019.105564.
    [24] ShenK,JiaY,WangX,et al.Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages[J].Free Radic Biol Med,2021,165:54-66.DOI: 10.1016/j.freeradbiomed.2021.01.023.
    [25] WeiP, ZhongC, YangX, et al. Exosomes derived from human amniotic epithelial cells accelerate diabetic wound healing via PI3K-AKT-mTOR-mediated promotion in angiogenesis and fibroblast function[J/OL]. Burns Trauma, 2020,8:tkaa020 [2022-02-24]. https://doi.org/ 10.1093/burnst/tkaa020. DOI: 10.1093/burnst/tkaa020.
    [26] PotterDA,VeitchD,JohnstonGA.Scarring and wound healing[J].Br J Hosp Med (Lond),2019,80(11):C166-C171.DOI: 10.12968/hmed.2019.80.11.C166.
    [27] BacakovaL,ZarubovaJ,TravnickovaM,et al.Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review[J].Biotechnol Adv,2018,36(4):1111-1126.DOI: 10.1016/j.biotechadv.2018.03.011.
    [28] MeldolesiJ.Exosomes and ectosomes in intercellular communication[J].Curr Biol,2018,28(8):R435-R444.DOI: 10.1016/j.cub.2018.01.059.
    [29] PegtelDM,GouldSJ.Exosomes[J].Annu Rev Biochem,2019,88:487-514.DOI: 10.1146/annurev-biochem-013118-111902.
    [30] KoritzinskyEH,StreetJM,StarRA,et al.Quantification of exosomes[J].J Cell Physiol,2017,232(7):1587-1590.DOI: 10.1002/jcp.25387.
    [31] XingX,HanS,ChengG,et al.Proteomic analysis of exosomes from adipose-derived mesenchymal stem cells: a novel therapeutic strategy for tissue injury[J].Biomed Res Int,2020,2020:6094562.DOI: 10.1155/2020/6094562.
    [32] ZhangW,BaiX,ZhaoB,et al.Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway[J].Exp Cell Res,2018,370(2):333-342.DOI: 10.1016/j.yexcr.2018.06.035.
    [33] CaputaG,FlachsmannLJ,CameronAM.Macrophage metabolism: a wound-healing perspective[J].Immunol Cell Biol,2019,97(3):268-278.DOI: 10.1111/imcb.12237.
    [34] KimSY,NairMG.Macrophages in wound healing: activation and plasticity[J].Immunol Cell Biol,2019,97(3):258-267.DOI: 10.1111/imcb.12236.
    [35] HamidzadehK,ChristensenSM,DalbyE,et al.Macrophages and the recovery from acute and chronic inflammation[J].Annu Rev Physiol,2017,79:567-592.DOI: 10.1146/annurev-physiol-022516-034348.
    [36] ShangY,SunY,XuJ,et al.Exosomes from mmu_circ_0001359-Modified ADSCs attenuate airway remodeling by enhancing FoxO1 signaling-mediated M2-like macrophage activation[J].Mol Ther Nucleic Acids,2020,19:951-960.DOI: 10.1016/j.omtn.2019.10.049.
    [37] LuoQ,GuoD,LiuG,et al.Exosomes from MiR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J].Cell Physiol Biochem,2017,44(6):2105-2116.DOI: 10.1159/000485949.
    [38] FengN,JiaY,HuangX.Exosomes from adipose-derived stem cells alleviate neural injury caused by microglia activation via suppressing NF-κB and MAPK pathway[J].J Neuroimmunol,2019,334:576996.DOI: 10.1016/j.jneuroim.2019.576996.
    [39] KlocM,GhobrialRM,WosikJ,et al.Macrophage functions in wound healing[J].J Tissue Eng Regen Med,2019,13(1):99-109.DOI: 10.1002/term.2772.
    [40] EmingSA,WynnTA,MartinP.Inflammation and metabolism in tissue repair and regeneration[J].Science,2017,356(6342):1026-1030.DOI: 10.1126/science.aam7928.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  857
  • HTML全文浏览量:  127
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16

目录

    /

    返回文章
    返回