留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物强度电场对人皮肤成纤维细胞转化的调节作用

王文平 冀然 张泽 邬亚婷 张恒术 张琼 江旭品 滕苗

王文平, 冀然, 张泽, 等. 生物强度电场对人皮肤成纤维细胞转化的调节作用[J]. 中华烧伤与创面修复杂志, 2022, 38(4): 354-362. DOI: 10.3760/cma.j.cn501120-20210112-00017.
引用本文: 王文平, 冀然, 张泽, 等. 生物强度电场对人皮肤成纤维细胞转化的调节作用[J]. 中华烧伤与创面修复杂志, 2022, 38(4): 354-362. DOI: 10.3760/cma.j.cn501120-20210112-00017.
Wang WP,Ji R,Zhang Z,et al.Regulatory effects of bio-intensity electric field on transformation of human skin fibroblasts[J].Chin J Burns Wounds,2022,38(4):354-362.DOI: 10.3760/cma.j.cn501120-20210112-00017.
Citation: Wang WP,Ji R,Zhang Z,et al.Regulatory effects of bio-intensity electric field on transformation of human skin fibroblasts[J].Chin J Burns Wounds,2022,38(4):354-362.DOI: 10.3760/cma.j.cn501120-20210112-00017.

生物强度电场对人皮肤成纤维细胞转化的调节作用

doi: 10.3760/cma.j.cn501120-20210112-00017
基金项目: 

国家自然科学基金面上项目 82072172

陆军军医大学科技创新能力提升专项 2020XQN12

详细信息
    通讯作者:

    江旭品,Email:jiangxupin@126.com

    滕苗,Email:happysean2004@foxmail.com

Regulatory effects of bio-intensity electric field on transformation of human skin fibroblasts

Funds: 

General Program of National Natural Science Foundation of China 82072172

Special Project for Scientific and Technological Innovation Ability Improvement of Army Medical University 2020XQN12

More Information
    Corresponding author: Jiang Xupin, Email: jiangxupin@126.com; Teng Miao, Email: happysean2004@foxmail.com
  • 摘要:   目的  探讨生物强度电场对人皮肤成纤维细胞(HSF)转化的调节作用。  方法  采用实验研究方法。取HSF,分为经200 mV/mm电场处理6 h的200 mV/mm电场组和置于电场装置中不通电处理6 h的模拟电场组,在活细胞工作站中观察细胞形态和排列变化;记录处理0、6 h细胞数,并计算细胞数变化率;观察并计算3 h内细胞运动方向、位移速度、轨迹速度(以上实验模拟电场组样本数为34、200 mV/mm电场组样本数为30);采用免疫荧光法检测处理3 h细胞α平滑肌肌动蛋白(α-SMA)的蛋白表达(样本数为3)。取HSF分为置于电场装置中不通电处理3 h的模拟电场组和经相应强度电场处理3 h的100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组,另取HSF分为置于电场装置中不通电处理6 h的模拟电场组和经200 mV/mm电场处理相应时间的电场处理1 h组、电场处理3 h组、电场处理6 h组,采用蛋白质印迹法检测α-SMA、增殖细胞核抗原(PCNA)的蛋白表达(样本数为3)。对数据行Mann-Whitney U检验、单因素方差分析、独立样本t检验及LSD检验。  结果  处理6 h,与模拟电场组相比,200 mV/mm电场组细胞形态拉长,并产生局部粘连;模拟电场组细胞任意排列,200 mV/mm电场组细胞呈有规律的纵向排列;2组细胞数变化率相近(P>0.05)。处理3 h内,200 mV/mm电场组细胞有明显的向正极运动趋势,模拟电场组细胞绕原点运动;与模拟电场组比较,200 mV/mm电场组细胞位移速度和轨迹速度均明显加快(Z值分别为-5.33、-5.41,P<0.01),方向性显著增强(Z=-4.39,P<0.01)。处理3 h,200 mV/mm电场组细胞α-SMA蛋白表达较模拟电场组明显增加(t=-9.81,P<0.01)。处理3 h,100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组细胞α-SMA蛋白表达分别为1.195±0.057、1.606±0.041、1.616±0.039,均明显多于模拟电场组的0.649±0.028(P<0.01)。与100 mV/mm电场组比较,200 mV/mm电场组、400 mV/mm电场组细胞α-SMA蛋白表达均明显增加(P<0.01)。电场处理1 h组、电场处理3 h组、电场处理6 h组细胞α-SMA蛋白表达分别为0.730±0.032、1.561±0.031、1.553±0.045,均明显多于模拟电场组的0.464±0.020(P<0.01);与电场处理1 h组比较,电场处理3 h组、电场处理6 h组细胞α-SMA蛋白表达均明显增加(P<0.01)。处理3 h,与模拟电场组比较,100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组细胞PCNA蛋白表达均明显减少(P<0.05或P<0.01);与100 mV/mm电场组比较,200 mV/mm电场组、400 mV/mm电场组细胞PCNA蛋白表达均明显减少(P<0.05或P<0.01);与200 mV/mm电场组比较,400 mV/mm电场组细胞PCNA蛋白表达明显减少(P<0.01)。与模拟电场组比较,电场处理1 h组、电场处理3 h组、电场处理6 h组细胞PCNA蛋白表达均明显减少(P<0.01);与电场处理1 h组比较,电场处理3 h组、电场处理6 h组细胞PCNA蛋白表达均明显减少(P<0.05或P<0.01);与电场处理3 h组比较,电场处理6 h组细胞PCNA蛋白表达明显减少(P<0.01)。  结论  生物强度电场可诱导HSF迁移、促进Fb向肌Fb转化,且转化有一定的时间及电场强度依赖性。

     

  • 参考文献(40)

    [1] JiR,TengM,ZhangZ,et al.Electric field down-regulates CD9 to promote keratinocytes migration through AMPK pathway[J].Int J Med Sci,2020,17(7):865-873.DOI: 10.7150/ijms.42840.
    [2] YanT,JiangX,GuoX,et al.Electric field-induced suppression of PTEN drives epithelial-to-mesenchymal transition via mTORC1 activation[J].J Dermatol Sci,2017,85(2):96-105.DOI: 10.1016/j.jdermsci.2016.11.007.
    [3] BostanLE,AlmqvistS,PullarCE.A pulsed current electric field alters protein expression creating a wound healing phenotype in human skin cells[J].Regen Med,2020,15(5):1611-1623.DOI: 10.2217/rme-2019-0087.
    [4] NuccitelliR.A role for endogenous electric fields in wound healing[J].Curr Top Dev Biol,2003,58:1-26.DOI: 10.1016/s0070-2153(03)58001-2.
    [5] AbeR,DonnellySC,PengT,et al.Peripheral blood fibrocytes: differentiation pathway and migration to wound sites[J].J Immunol,2001,166(12):7556-7562.DOI: 10.4049/jimmunol.166.12.7556.
    [6] DeesC,ChakrabortyD,DistlerJHW.Cellular and molecular mechanisms in fibrosis[J].Exp Dermatol,2021,30(1):121-131.DOI: 10.1111/exd.14193.
    [7] RemstDF,Blaney DavidsonEN,van der KraanPM.Unravelling osteoarthritis-related synovial fibrosis: a step closer to solving joint stiffness[J].Rheumatology (Oxford),2015,54(11):1954-1963.DOI: 10.1093/rheumatology/kev228.
    [8] KamilS,MohanRR.Corneal stromal wound healing: major regulators and therapeutic targets[J].Ocul Surf,2021,19:290-306.DOI: 10.1016/j.jtos.2020.10.006.
    [9] 刘杰,任淅,郭小伟,等.直流电场对BALB/c小鼠乳鼠真皮成纤维细胞定向迁移与排列的作用及其机制[J].中华烧伤杂志,2016,32(4):224-231.DOI: 10.3760/cma.j.issn.1009-2587.2016.04.007.
    [10] 冀然,张泽,王文平,等.生物强度电场对人表皮细胞株HaCaT和小鼠表皮细胞运动性及CD9表达的影响[J].中华烧伤杂志,2021,37(1):34-41.DOI: 10.3760/cma.j.cn501120-20200115-00023.
    [11] TredgetEE,LeviB,DonelanMB.Biology and principles of scar management and burn reconstruction[J].Surg Clin North Am,2014,94(4):793-815.DOI: 10.1016/j.suc.2014.05.005.
    [12] BarrettLW,FearVS,WaithmanJC,et al.Understanding acute burn injury as a chronic disease[J/OL].Burns Trauma,2019,7:23[2022-03-16].https://pubmed.ncbi.nlm.nih.gov/31534977/. DOI: 10.1186/s41038-019-0163-2.
    [13] DesmoulièreA,DarbyIA,GabbianiG.Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis[J].Lab Invest,2003,83(12):1689-1707.DOI: 10.1097/01.lab.0000101911.53973.90.
    [14] CulleyOJ,LouisB,PhilippeosC,et al.Differential expression of insulin-like growth factor 1 and Wnt family member 4 correlates with functional heterogeneity of human dermal fibroblasts[J].Front Cell Dev Biol,2021,9:628039.DOI: 10.3389/fcell.2021.628039.
    [15] TomasekJJ,GabbianiG,HinzB,et al.Myofibroblasts and mechano-regulation of connective tissue remodelling[J].Nat Rev Mol Cell Biol,2002,3(5):349-363.DOI: 10.1038/nrm809.
    [16] XinY,MinP,XuH,et al.CD26 upregulates proliferation and invasion in keloid fibroblasts through an IGF-1-induced PI3K/AKT/mTOR pathway[J/OL].Burns Trauma,2020,8:tkaa025[2022-03-16].https://pubmed.ncbi.nlm.nih.gov/33150188/. DOI: 10.1093/burnst/tkaa025.
    [17] ModarressiA,PietramaggioriG,GodboutC,et al.Hypoxia impairs skin myofibroblast differentiation and function[J].J Invest Dermatol,2010,130(12):2818-2827.DOI: 10.1038/jid.2010.224.
    [18] Demidova-RiceTN,HamblinMR,HermanIM.Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery[J].Adv Skin Wound Care,2012,25(8):349-370.DOI: 10.1097/01.ASW.0000418541.31366.a3.
    [19] PutnikP,KresojaŽ,BosiljkovT,et al.Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: a review[J].Food Chem,2019,279:150-161.DOI: 10.1016/j.foodchem.2018.11.131.
    [20] SnyderS,DeJuliusC,WillitsRK.Electrical stimulation increases random migration of human dermal fibroblasts[J].Ann Biomed Eng,2017,45(9):2049-2060.DOI: 10.1007/s10439-017-1849-x.
    [21] SuessPM,SmithSA,MorrisseyJH.Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation[J].J Thromb Haemost,2020,18(11):3043-3052.DOI: 10.1111/jth.15066.
    [22] NguyenEB,WishnerJ,SlowinskaK.The effect of pulsed electric field on expression of ECM proteins: collagen, elastin, and MMP1 in human dermal fibroblasts[J].J Electroanal Chem (Lausanne),2018,812:265-272.DOI: 10.1016/j.jelechem.2018.01.050.
    [23] ChaponnierC,GabbianiG.Pathological situations characterized by altered actin isoform expression[J].J Pathol,2004,204(4):386-395.DOI: 10.1002/path.1635.
    [24] FroidureA,Marchal-DuvalE,Homps-LegrandM,et al.Chaotic activation of developmental signalling pathways drives idiopathic pulmonary fibrosis[J].Eur Respir Rev,2020,29(158):190140. DOI: 10.1183/16000617.0140-2019.
    [25] Vaamonde-GarciaC,MalaiseO,CharlierE,et al.15-Deoxy-Δ-12, 14-prostaglandin J2 acts cooperatively with prednisolone to reduce TGF-β-induced pro-fibrotic pathways in human osteoarthritis fibroblasts[J].Biochem Pharmacol,2019,165:66-78.DOI: 10.1016/j.bcp.2019.03.039.
    [26] SidgwickGP,BayatA.Extracellular matrix molecules implicated in hypertrophic and keloid scarring[J].J Eur Acad Dermatol Venereol,2012,26(2):141-152.DOI: 10.1111/j.1468-3083.2011.04200.x.
    [27] TanJ,WuJ.Current progress in understanding the molecular pathogenesis of burn scar contracture[J/OL].Burns Trauma,2017,5:14[2022-03-16]. https://pubmed.ncbi.nlm.nih.gov/28546987/. DOI: 10.1186/s41038-017-0080-1.
    [28] WangL,KongW,LiuB,et al.Proliferating cell nuclear antigen promotes cell proliferation and tumorigenesis by up-regulating STAT3 in non-small cell lung cancer[J].Biomed Pharmacother,2018,104:595-602.DOI: 10.1016/j.biopha.2018.05.071.
    [29] ZhengW,XuS.Analysis of differential expression proteins of paclitaxel-treated lung adenocarcinoma cell A549 using tandem mass tag-based quantitative proteomics[J].Onco Targets Ther,2020,13:10297-10313.DOI: 10.2147/OTT.S259895.
    [30] ChiangCP,LangMJ,LiuBY,et al.Expression of proliferating cell nuclear antigen (PCNA) in oral submucous fibrosis, oral epithelial hyperkeratosis and oral epithelial dysplasia in Taiwan[J].Oral Oncol,2000,36(4):353-359.DOI: 10.1016/s1368-8375(00)00014-2.
    [31] ChenW,WuC,ChenY,et al.Downregulation of ceramide synthase 1 promotes oral cancer through endoplasmic reticulum stress[J].Int J Oral Sci,2021,13(1):10.DOI: 10.1038/s41368-021-00118-4.
    [32] KisK,LiuX,HagoodJS.Myofibroblast differentiation and survival in fibrotic disease[J].Expert Rev Mol Med,2011,13:e27.DOI: 10.1017/S1462399411001967.
    [33] ShenM,YoungA,C.PCNAAutexier, a focus on replication stress and the alternative lengthening of telomeres pathway[J].DNA Repair (Amst),2021,100:103055.DOI: 10.1016/j.dnarep.2021.103055.
    [34] DharadharS,van DijkWJ,ScheffersS,et al.Insert L1 is a central hub for allosteric regulation of USP1 activity[J].EMBO Rep,2021,22(4):e51749.DOI: 10.15252/embr.202051749.
    [35] LiB,WangR,WangY,et al.Regulation of smooth muscle contraction by monomeric non-RhoA GTPases[J].Br J Pharmacol,2020,177(17):3865-3877.DOI: 10.1111/bph.15172.
    [36] PfitzerG,WirthA,LuciusC,et al.Regulation of smooth muscle contraction by calcium, monomeric GTPases of the Rho subfamily and their effector kinases[J].Adv Exp Med Biol,2003,538:89-99; discussion 99.DOI: 10.1007/978-1-4419-9029-7_8.
    [37] LiX,WangF,LanY,et al.GDF-5 induces epidermal stem cell migration via RhoA-MMP9 signalling[J].J Cell Mol Med,2021,25(4):1939-1948.DOI: 10.1111/jcmm.15925.
    [38] QiY,LiangX,DaiF,et al.RhoA/ROCK pathway activation is regulated by AT1 receptor and participates in smooth muscle migration and dedifferentiation via promoting actin cytoskeleton polymerization[J].Int J Mol Sci,2020,21(15):5398. DOI: 10.3390/ijms21155398.
    [39] LeinhosL,PetersJ,KrullS,et al.Hypoxia suppresses myofibroblast differentiation by changing RhoA activity[J].J Cell Sci,2019,132(5):jcs223230. DOI: 10.1242/jcs.223230.
    [40] TsaiCH, LinBJ, ChaoPH. α2β1 integrin and RhoA mediates electric field-induced ligament fibroblast migration directionality[J].J Orthop Res, 2013,31(2):322-327. DOI: 10.1002/jor.22215.
  • 1  采用活细胞工作站观察电场刺激各时间点2组人皮肤成纤维细胞的形态和排列 倒置相差显微镜×100,图中标尺为100 μm。 1A、1B.分别为模拟电场组处理0(即刻)、6 h,细胞均呈任意方向排列;1C、1D.分别为200 mV/mm电场组处理0、6 h,图1C细胞呈任意方向排列,图1D细胞形态拉长,呈纵向排列,细胞长轴与电场方向垂直

    注:图1D下方箭头为电场方向,“+” 为正极、“-” 为负极

    2  采用活细胞工作站观察2组人皮肤成纤维细胞经电场处理3 h内运动轨迹 倒置相差显微镜×100。2A.模拟电场组细胞绕原点运动;2B.200 mV/mm电场组细胞趋向于正极运动

    注:细胞运动起点为坐标(0,0),运动终点为4个象限中的圆点,连接前述2个点之间的曲线为细胞运动轨迹,圆点位于左上、左下象限代表细胞向负极方向迁移,圆点位于右上、右下象限代表细胞向正极方向迁移;图2B下方箭头为电场方向,“ + ” 为正极、“-”为负极

    3  免疫荧光法检测电场处理3 h后2组人皮肤成纤维细胞α-SMA的表达 Alexa Fluor 488-4′,6-二脒基-2-苯基吲哚-罗丹明标记的鬼笔环肽×100,图中标尺为100 μm。3A、3B、3C.分别为模拟电场组细胞α-SMA蛋白表达、纤维状肌动蛋白排列、细胞核形态,α-SMA蛋白表达较低,纤维状肌动蛋白无序排列,细胞核完整;3D、3E、3F.分别为200 mV/mm电场组细胞α-SMA蛋白表达、纤维肌动蛋白排列、细胞核形态,图3D中α-SMA蛋白表达较图3A增加,纤维状肌动蛋白纵向排列,细胞核完整

    注:绿色荧光标记α平滑肌肌动蛋白(α-SMA),红色荧光标记纤维状肌动蛋白,蓝色荧光标记细胞核

    4  蛋白质印迹法检测不同强度电场处理3 h后4组人皮肤成纤维细胞α-SMA蛋白表达

    注:α-SMA为α平滑肌肌动蛋白,GAPDH为3-磷酸甘油醛脱氢酶;条带上方1、2、3、4分别指模拟电场组、100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组

    5  蛋白质印迹法检测电场处理不同时间4组人皮肤成纤维细胞α-SMA蛋白表达

    注:α-SMA为α平滑肌肌动蛋白,GAPDH为3-磷酸甘油醛脱氢酶;条带上方1、2、3、4分别指模拟电场组(处理6 h)、电场处理1 h组、电场处理3 h组、电场处理6 h组

    6  蛋白质印迹法检测不同强度电场处理3 h后4组人皮肤成纤维细胞增殖细胞核抗原(PCNA)蛋白表达

    注:条带上方1、2、3、4分别指模拟电场组、100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组

    7  蛋白质印迹法检测电场处理不同时间4组人皮肤成纤维细胞增殖细胞核抗原(PCNA)蛋白表达

    注:条带上方1、2、3、4分别指模拟电场组(处理6 h)、电场处理1 h组、电场处理3 h组、电场处理6 h组

    表1  2组人皮肤成纤维细胞经电场处理3 h内cosθ及位移速度和轨迹速度比较[M(Q1Q3)]

    组别样本数cosθ位移速度(μm/min)轨迹速度(μm/min)
    模拟电场组34-0.184(-0.336,0.371)0.207(0.160,0.261)0.165(0.126,0.204)
    200 mV/mm电场组300.833(0.694,0.925)0.470(0.419,0.523)0.383(0.347,0.438)
    Z-4.39-5.33-5.41
    P<0.001<0.001<0.001
    下载: 导出CSV

      《中华烧伤与创面修复杂志》第六届编辑委员会通讯编委名单按姓氏拼音排序

    贲道锋卞徽宁曹永倩晁生武陈辉陈婧陈朗陈铭锐陈鹏陈晓东
    陈忠勇程君涛迟云飞储国平党永明邓呈亮狄海萍丁国兵丁若虹董茂龙
    段红杰段鹏樊东力房贺冯光付忠华郭毅斌韩兆峰侯春胜胡德林
    胡炯宇胡骁骅胡晓燕黄红军纪世召江华姜丽萍姜玉峰雷娜黎宁
    李东杰李峰李靖李晓东李晓鲁梁钢梁鹏飞林才林国安林源
    刘德伍刘健刘军刘淑华龙奕卢长虹鲁峰吕开阳吕强马思远
    牛轶雯欧阳军乔亮覃凤均邱学文曲滨任超沈江涌石继红宋慧锋
    苏海涛苏永涛孙勇孙瑜谭江琳唐修俊滕苗田社民涂家金汪虹
    汪洋王爱萍王德怀王洪涛王会军王良喜王爽王献珍王志永温冰
    邬佳敏吴红吴继炎吴巍巍吴祖煌向飞向军谢举临谢松涛辛海明
    许喜生许学文薛斌杨建民杨敏烈杨薛康姚明姚兴伟叶祥柏易成刚
    易南于东宁岳丽青翟红军詹日兴张博张东霞张红艳张菊芳张玲娟
    张庆红张彦琦张寅张元海张志赵全赵冉赵雄郑德义郑东风
    郑军周国富周俊峄周琴周万芳朱峰朱宇刚祝筱梅邹立津邹晓防
    下载: 导出CSV
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  71
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-12

目录

    /

    返回文章
    返回