Regulatory effects of bio-intensity electric field on transformation of human skin fibroblasts
-
摘要:
目的 探讨生物强度电场对人皮肤成纤维细胞(HSF)转化的调节作用。 方法 采用实验研究方法。取HSF,分为经200 mV/mm电场处理6 h的200 mV/mm电场组和置于电场装置中不通电处理6 h的模拟电场组,在活细胞工作站中观察细胞形态和排列变化;记录处理0、6 h细胞数,并计算细胞数变化率;观察并计算3 h内细胞运动方向、位移速度、轨迹速度(以上实验模拟电场组样本数为34、200 mV/mm电场组样本数为30);采用免疫荧光法检测处理3 h细胞α平滑肌肌动蛋白(α-SMA)的蛋白表达(样本数为3)。取HSF分为置于电场装置中不通电处理3 h的模拟电场组和经相应强度电场处理3 h的100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组,另取HSF分为置于电场装置中不通电处理6 h的模拟电场组和经200 mV/mm电场处理相应时间的电场处理1 h组、电场处理3 h组、电场处理6 h组,采用蛋白质印迹法检测α-SMA、增殖细胞核抗原(PCNA)的蛋白表达(样本数为3)。对数据行Mann-Whitney U检验、单因素方差分析、独立样本t检验及LSD检验。 结果 处理6 h,与模拟电场组相比,200 mV/mm电场组细胞形态拉长,并产生局部粘连;模拟电场组细胞任意排列,200 mV/mm电场组细胞呈有规律的纵向排列;2组细胞数变化率相近(P>0.05)。处理3 h内,200 mV/mm电场组细胞有明显的向正极运动趋势,模拟电场组细胞绕原点运动;与模拟电场组比较,200 mV/mm电场组细胞位移速度和轨迹速度均明显加快(Z值分别为-5.33、-5.41,P<0.01),方向性显著增强(Z=-4.39,P<0.01)。处理3 h,200 mV/mm电场组细胞α-SMA蛋白表达较模拟电场组明显增加(t=-9.81,P<0.01)。处理3 h,100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组细胞α-SMA蛋白表达分别为1.195±0.057、1.606±0.041、1.616±0.039,均明显多于模拟电场组的0.649±0.028(P<0.01)。与100 mV/mm电场组比较,200 mV/mm电场组、400 mV/mm电场组细胞α-SMA蛋白表达均明显增加(P<0.01)。电场处理1 h组、电场处理3 h组、电场处理6 h组细胞α-SMA蛋白表达分别为0.730±0.032、1.561±0.031、1.553±0.045,均明显多于模拟电场组的0.464±0.020(P<0.01);与电场处理1 h组比较,电场处理3 h组、电场处理6 h组细胞α-SMA蛋白表达均明显增加(P<0.01)。处理3 h,与模拟电场组比较,100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组细胞PCNA蛋白表达均明显减少(P<0.05或P<0.01);与100 mV/mm电场组比较,200 mV/mm电场组、400 mV/mm电场组细胞PCNA蛋白表达均明显减少(P<0.05或P<0.01);与200 mV/mm电场组比较,400 mV/mm电场组细胞PCNA蛋白表达明显减少(P<0.01)。与模拟电场组比较,电场处理1 h组、电场处理3 h组、电场处理6 h组细胞PCNA蛋白表达均明显减少(P<0.01);与电场处理1 h组比较,电场处理3 h组、电场处理6 h组细胞PCNA蛋白表达均明显减少(P<0.05或P<0.01);与电场处理3 h组比较,电场处理6 h组细胞PCNA蛋白表达明显减少(P<0.01)。 结论 生物强度电场可诱导HSF迁移、促进Fb向肌Fb转化,且转化有一定的时间及电场强度依赖性。 Abstract:Objective To investigate the regulatory effects of bio-intensity electric field on the transformation of human skin fibroblasts (HSFs). Methods The experimental research methods were used. HSFs were collected and divided into 200 mV/mm electric field group treated with 200 mV/mm electric field for 6 h and simulated electric field group placed in the electric field device without electricity for 6 h. Changes in morphology and arrangement of cells were observed in the living cell workstation; the number of cells at 0 and 6 h of treatment was recorded, and the rate of change in cell number was calculated; the direction of cell movement, movement velocity, and trajectory velocity within 3 h were observed and calculated (the number of samples was 34 in the simulated electric field group and 30 in 200 mV/mm electric field group in the aforementioned experiments); the protein expression of α-smooth muscle actin (α-SMA) in cells after 3 h of treatment was detected by immunofluorescence method (the number of sample was 3). HSFs were collected and divided into simulated electric field group placed in the electric field device without electricity for 3 h, and 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group which were treated with electric fields of corresponding intensities for 3 h. Besides, HSFs were divided into simulated electric field group placed in the electric field device without electricity for 6 h, and electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group treated with 200 mV/mm electric field for corresponding time. The protein expressions of α-SMA and proliferating cell nuclear antigen (PCNA) were detected by Western blotting (the number of sample was 3). Data were statistically analyzed with Mann-Whitney U test, one-way analysis of variance, independent sample t test, and least significant difference test. Results After 6 h of treatment, compared with that in simulated electric field group, the cells in 200 mV/mm electric field group were elongated in shape and locally adhered; the cells in simulated electric field group were randomly arranged, while the cells in 200 mV/mm electric field group were arranged in a regular longitudinal direction; the change rates in the number of cells in the two groups were similar (P>0.05). Within 3 h of treatment, the cells in 200 mV/mm electric field group had an obvious tendency to move toward the positive electrode, and the cells in simulated electric field group moved around the origin; compared with those in simulated electric field group, the movement velocity and trajectory velocity of the cells in 200 mV/mm electric field group were increased significantly (with Z values of -5.33 and -5.41, respectively, P<0.01), and the directionality was significantly enhanced (Z=-4.39, P<0.01). After 3 h of treatment, the protein expression of α-SMA of cells in 200 mV/mm electric field group was significantly higher than that in simulated electric field group (t=-9.81, P<0.01). After 3 h of treatment, the protein expressions of α-SMA of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group were 1.195±0.057, 1.606±0.041, and 1.616±0.039, respectively, which were significantly more than 0.649±0.028 in simulated electric field group (P<0.01). Compared with that in 100 mV/mm electric field group, the protein expressions of α-SMA of cells in 200 mV/mm electric field group and 400 mV/mm electric field group were significantly increased (P<0.01). The protein expressions of α-SMA of cells in electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group were 0.730±0.032, 1.561±0.031, and 1.553±0.045, respectively, significantly more than 0.464±0.020 in simulated electric field group (P<0.01). Compared with that in electric field treatment 1 h group, the protein expressions of α-SMA in electric field treatment 3 h group and electric field treatment 6 h group were significantly increased (P<0.01). After 3 h of treatment, compared with that in simulated electric field group, the protein expressions of PCNA of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group were significantly decreased (P<0.05 or P<0.01); compared with that in 100 mV/mm electric field group, the protein expressions of PCNA of cells in 200 mV/mm electric field group and 400 mV/mm electric field group were significantly decreased (P<0.05 or P<0.01); compared with that in 200 mV/mm electric field group, the protein expression of PCNA of cells in 400 mV/mm electric field group was significantly decreased (P<0.01). Compared with that in simulated electric field group, the protein expressions of PCNA of cells in electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group were significantly decreased (P<0.01); compared with that in electric field treatment 1 h group, the protein expressions of PCNA of cells in electric field treatment 3 h group and electric field treatment 6 h group were significantly decreased (P<0.05 or P<0.01); compared with that in electric field treatment 3 h group, the protein expression of PCNA of cells in electric field treatment 6 h group was significantly decreased (P<0.01). Conclusions The bio-intensity electric field can induce the migration of HSFs and promote the transformation of fibroblasts to myofibroblasts, and the transformation displays certain dependence on the time and intensity of electric field. -
Key words:
- Skin /
- Fibroblasts /
- Myofibroblasts /
- Cell proliferation /
- Cell transformation /
- Bio-intensity electric fields
-
参考文献
(40) [1] JiR,TengM,ZhangZ,et al.Electric field down-regulates CD9 to promote keratinocytes migration through AMPK pathway[J].Int J Med Sci,2020,17(7):865-873.DOI: 10.7150/ijms.42840. [2] YanT,JiangX,GuoX,et al.Electric field-induced suppression of PTEN drives epithelial-to-mesenchymal transition via mTORC1 activation[J].J Dermatol Sci,2017,85(2):96-105.DOI: 10.1016/j.jdermsci.2016.11.007. [3] BostanLE,AlmqvistS,PullarCE.A pulsed current electric field alters protein expression creating a wound healing phenotype in human skin cells[J].Regen Med,2020,15(5):1611-1623.DOI: 10.2217/rme-2019-0087. [4] NuccitelliR.A role for endogenous electric fields in wound healing[J].Curr Top Dev Biol,2003,58:1-26.DOI: 10.1016/s0070-2153(03)58001-2. [5] AbeR,DonnellySC,PengT,et al.Peripheral blood fibrocytes: differentiation pathway and migration to wound sites[J].J Immunol,2001,166(12):7556-7562.DOI: 10.4049/jimmunol.166.12.7556. [6] DeesC,ChakrabortyD,DistlerJHW.Cellular and molecular mechanisms in fibrosis[J].Exp Dermatol,2021,30(1):121-131.DOI: 10.1111/exd.14193. [7] RemstDF,Blaney DavidsonEN,van der KraanPM.Unravelling osteoarthritis-related synovial fibrosis: a step closer to solving joint stiffness[J].Rheumatology (Oxford),2015,54(11):1954-1963.DOI: 10.1093/rheumatology/kev228. [8] KamilS,MohanRR.Corneal stromal wound healing: major regulators and therapeutic targets[J].Ocul Surf,2021,19:290-306.DOI: 10.1016/j.jtos.2020.10.006. [9] 刘杰,任淅,郭小伟,等.直流电场对BALB/c小鼠乳鼠真皮成纤维细胞定向迁移与排列的作用及其机制[J].中华烧伤杂志,2016,32(4):224-231.DOI: 10.3760/cma.j.issn.1009-2587.2016.04.007. [10] 冀然,张泽,王文平,等.生物强度电场对人表皮细胞株HaCaT和小鼠表皮细胞运动性及CD9表达的影响[J].中华烧伤杂志,2021,37(1):34-41.DOI: 10.3760/cma.j.cn501120-20200115-00023. [11] TredgetEE,LeviB,DonelanMB.Biology and principles of scar management and burn reconstruction[J].Surg Clin North Am,2014,94(4):793-815.DOI: 10.1016/j.suc.2014.05.005. [12] BarrettLW,FearVS,WaithmanJC,et al.Understanding acute burn injury as a chronic disease[J/OL].Burns Trauma,2019,7:23[2022-03-16].https://pubmed.ncbi.nlm.nih.gov/31534977/. DOI: 10.1186/s41038-019-0163-2. [13] DesmoulièreA,DarbyIA,GabbianiG.Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis[J].Lab Invest,2003,83(12):1689-1707.DOI: 10.1097/01.lab.0000101911.53973.90. [14] CulleyOJ,LouisB,PhilippeosC,et al.Differential expression of insulin-like growth factor 1 and Wnt family member 4 correlates with functional heterogeneity of human dermal fibroblasts[J].Front Cell Dev Biol,2021,9:628039.DOI: 10.3389/fcell.2021.628039. [15] TomasekJJ,GabbianiG,HinzB,et al.Myofibroblasts and mechano-regulation of connective tissue remodelling[J].Nat Rev Mol Cell Biol,2002,3(5):349-363.DOI: 10.1038/nrm809. [16] XinY,MinP,XuH,et al.CD26 upregulates proliferation and invasion in keloid fibroblasts through an IGF-1-induced PI3K/AKT/mTOR pathway[J/OL].Burns Trauma,2020,8:tkaa025[2022-03-16].https://pubmed.ncbi.nlm.nih.gov/33150188/. DOI: 10.1093/burnst/tkaa025. [17] ModarressiA,PietramaggioriG,GodboutC,et al.Hypoxia impairs skin myofibroblast differentiation and function[J].J Invest Dermatol,2010,130(12):2818-2827.DOI: 10.1038/jid.2010.224. [18] Demidova-RiceTN,HamblinMR,HermanIM.Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery[J].Adv Skin Wound Care,2012,25(8):349-370.DOI: 10.1097/01.ASW.0000418541.31366.a3. [19] PutnikP,KresojaŽ,BosiljkovT,et al.Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: a review[J].Food Chem,2019,279:150-161.DOI: 10.1016/j.foodchem.2018.11.131. [20] SnyderS,DeJuliusC,WillitsRK.Electrical stimulation increases random migration of human dermal fibroblasts[J].Ann Biomed Eng,2017,45(9):2049-2060.DOI: 10.1007/s10439-017-1849-x. [21] SuessPM,SmithSA,MorrisseyJH.Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation[J].J Thromb Haemost,2020,18(11):3043-3052.DOI: 10.1111/jth.15066. [22] NguyenEB,WishnerJ,SlowinskaK.The effect of pulsed electric field on expression of ECM proteins: collagen, elastin, and MMP1 in human dermal fibroblasts[J].J Electroanal Chem (Lausanne),2018,812:265-272.DOI: 10.1016/j.jelechem.2018.01.050. [23] ChaponnierC,GabbianiG.Pathological situations characterized by altered actin isoform expression[J].J Pathol,2004,204(4):386-395.DOI: 10.1002/path.1635. [24] FroidureA,Marchal-DuvalE,Homps-LegrandM,et al.Chaotic activation of developmental signalling pathways drives idiopathic pulmonary fibrosis[J].Eur Respir Rev,2020,29(158):190140. DOI: 10.1183/16000617.0140-2019. [25] Vaamonde-GarciaC,MalaiseO,CharlierE,et al.15-Deoxy-Δ-12, 14-prostaglandin J2 acts cooperatively with prednisolone to reduce TGF-β-induced pro-fibrotic pathways in human osteoarthritis fibroblasts[J].Biochem Pharmacol,2019,165:66-78.DOI: 10.1016/j.bcp.2019.03.039. [26] SidgwickGP,BayatA.Extracellular matrix molecules implicated in hypertrophic and keloid scarring[J].J Eur Acad Dermatol Venereol,2012,26(2):141-152.DOI: 10.1111/j.1468-3083.2011.04200.x. [27] TanJ,WuJ.Current progress in understanding the molecular pathogenesis of burn scar contracture[J/OL].Burns Trauma,2017,5:14[2022-03-16]. https://pubmed.ncbi.nlm.nih.gov/28546987/. DOI: 10.1186/s41038-017-0080-1. [28] WangL,KongW,LiuB,et al.Proliferating cell nuclear antigen promotes cell proliferation and tumorigenesis by up-regulating STAT3 in non-small cell lung cancer[J].Biomed Pharmacother,2018,104:595-602.DOI: 10.1016/j.biopha.2018.05.071. [29] ZhengW,XuS.Analysis of differential expression proteins of paclitaxel-treated lung adenocarcinoma cell A549 using tandem mass tag-based quantitative proteomics[J].Onco Targets Ther,2020,13:10297-10313.DOI: 10.2147/OTT.S259895. [30] ChiangCP,LangMJ,LiuBY,et al.Expression of proliferating cell nuclear antigen (PCNA) in oral submucous fibrosis, oral epithelial hyperkeratosis and oral epithelial dysplasia in Taiwan[J].Oral Oncol,2000,36(4):353-359.DOI: 10.1016/s1368-8375(00)00014-2. [31] ChenW,WuC,ChenY,et al.Downregulation of ceramide synthase 1 promotes oral cancer through endoplasmic reticulum stress[J].Int J Oral Sci,2021,13(1):10.DOI: 10.1038/s41368-021-00118-4. [32] KisK,LiuX,HagoodJS.Myofibroblast differentiation and survival in fibrotic disease[J].Expert Rev Mol Med,2011,13:e27.DOI: 10.1017/S1462399411001967. [33] ShenM,YoungA,C.PCNAAutexier, a focus on replication stress and the alternative lengthening of telomeres pathway[J].DNA Repair (Amst),2021,100:103055.DOI: 10.1016/j.dnarep.2021.103055. [34] DharadharS,van DijkWJ,ScheffersS,et al.Insert L1 is a central hub for allosteric regulation of USP1 activity[J].EMBO Rep,2021,22(4):e51749.DOI: 10.15252/embr.202051749. [35] LiB,WangR,WangY,et al.Regulation of smooth muscle contraction by monomeric non-RhoA GTPases[J].Br J Pharmacol,2020,177(17):3865-3877.DOI: 10.1111/bph.15172. [36] PfitzerG,WirthA,LuciusC,et al.Regulation of smooth muscle contraction by calcium, monomeric GTPases of the Rho subfamily and their effector kinases[J].Adv Exp Med Biol,2003,538:89-99; discussion 99.DOI: 10.1007/978-1-4419-9029-7_8. [37] LiX,WangF,LanY,et al.GDF-5 induces epidermal stem cell migration via RhoA-MMP9 signalling[J].J Cell Mol Med,2021,25(4):1939-1948.DOI: 10.1111/jcmm.15925. [38] QiY,LiangX,DaiF,et al.RhoA/ROCK pathway activation is regulated by AT1 receptor and participates in smooth muscle migration and dedifferentiation via promoting actin cytoskeleton polymerization[J].Int J Mol Sci,2020,21(15):5398. DOI: 10.3390/ijms21155398. [39] LeinhosL,PetersJ,KrullS,et al.Hypoxia suppresses myofibroblast differentiation by changing RhoA activity[J].J Cell Sci,2019,132(5):jcs223230. DOI: 10.1242/jcs.223230. [40] TsaiCH, LinBJ, ChaoPH. α2β1 integrin and RhoA mediates electric field-induced ligament fibroblast migration directionality[J].J Orthop Res, 2013,31(2):322-327. DOI: 10.1002/jor.22215. -
3 免疫荧光法检测电场处理3 h后2组人皮肤成纤维细胞α-SMA的表达 Alexa Fluor 488-4′,6-二脒基-2-苯基吲哚-罗丹明标记的鬼笔环肽×100,图中标尺为100 μm。3A、3B、3C.分别为模拟电场组细胞α-SMA蛋白表达、纤维状肌动蛋白排列、细胞核形态,α-SMA蛋白表达较低,纤维状肌动蛋白无序排列,细胞核完整;3D、3E、3F.分别为200 mV/mm电场组细胞α-SMA蛋白表达、纤维肌动蛋白排列、细胞核形态,图3D中α-SMA蛋白表达较图3A增加,纤维状肌动蛋白纵向排列,细胞核完整
注:绿色荧光标记α平滑肌肌动蛋白(α-SMA),红色荧光标记纤维状肌动蛋白,蓝色荧光标记细胞核
表1 2组人皮肤成纤维细胞经电场处理3 h内cosθ及位移速度和轨迹速度比较[M(Q1,Q3)]
组别 样本数 cosθ 位移速度(μm/min) 轨迹速度(μm/min) 模拟电场组 34 -0.184(-0.336,0.371) 0.207(0.160,0.261) 0.165(0.126,0.204) 200 mV/mm电场组 30 0.833(0.694,0.925) 0.470(0.419,0.523) 0.383(0.347,0.438) Z值 -4.39 -5.33 -5.41 P值 <0.001 <0.001 <0.001 《中华烧伤与创面修复杂志》第六届编辑委员会通讯编委名单按姓氏拼音排序
贲道锋 卞徽宁 曹永倩 晁生武 陈辉 陈婧 陈朗 陈铭锐 陈鹏 陈晓东 陈忠勇 程君涛 迟云飞 储国平 党永明 邓呈亮 狄海萍 丁国兵 丁若虹 董茂龙 段红杰 段鹏 樊东力 房贺 冯光 付忠华 郭毅斌 韩兆峰 侯春胜 胡德林 胡炯宇 胡骁骅 胡晓燕 黄红军 纪世召 江华 姜丽萍 姜玉峰 雷娜 黎宁 李东杰 李峰 李靖 李晓东 李晓鲁 梁钢 梁鹏飞 林才 林国安 林源 刘德伍 刘健 刘军 刘淑华 龙奕 卢长虹 鲁峰 吕开阳 吕强 马思远 牛轶雯 欧阳军 乔亮 覃凤均 邱学文 曲滨 任超 沈江涌 石继红 宋慧锋 苏海涛 苏永涛 孙勇 孙瑜 谭江琳 唐修俊 滕苗 田社民 涂家金 汪虹 汪洋 王爱萍 王德怀 王洪涛 王会军 王良喜 王爽 王献珍 王志永 温冰 邬佳敏 吴红 吴继炎 吴巍巍 吴祖煌 向飞 向军 谢举临 谢松涛 辛海明 许喜生 许学文 薛斌 杨建民 杨敏烈 杨薛康 姚明 姚兴伟 叶祥柏 易成刚 易南 于东宁 岳丽青 翟红军 詹日兴 张博 张东霞 张红艳 张菊芳 张玲娟 张庆红 张彦琦 张寅 张元海 张志 赵全 赵冉 赵雄 郑德义 郑东风 郑军 周国富 周俊峄 周琴 周万芳 朱峰 朱宇刚 祝筱梅 邹立津 邹晓防