留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

制备新型负压材料以构建大鼠全层皮肤缺损创面新生基质的可行性研究

刘亦凡 江兆奇 黄瑶 倪鹏文 谢挺

刘亦凡, 江兆奇, 黄瑶, 等. 制备新型负压材料以构建大鼠全层皮肤缺损创面新生基质的可行性研究[J]. 中华烧伤与创面修复杂志, 2022, 38(7): 650-660. DOI: 10.3760/cma.j.cn501120-20210401-00113.
引用本文: 刘亦凡, 江兆奇, 黄瑶, 等. 制备新型负压材料以构建大鼠全层皮肤缺损创面新生基质的可行性研究[J]. 中华烧伤与创面修复杂志, 2022, 38(7): 650-660. DOI: 10.3760/cma.j.cn501120-20210401-00113.
Liu YF,Jiang ZQ,Huang Y,et al.Feasibility study on the preparation of novel negative pressure materials for constructing new matrix of full-thickness skin defect wounds in rats[J].Chin J Burns Wounds,2022,38(7):650-660.DOI: 10.3760/cma.j.cn501120-20210401-00113.
Citation: Liu YF,Jiang ZQ,Huang Y,et al.Feasibility study on the preparation of novel negative pressure materials for constructing new matrix of full-thickness skin defect wounds in rats[J].Chin J Burns Wounds,2022,38(7):650-660.DOI: 10.3760/cma.j.cn501120-20210401-00113.

制备新型负压材料以构建大鼠全层皮肤缺损创面新生基质的可行性研究

doi: 10.3760/cma.j.cn501120-20210401-00113
基金项目: 

国家自然科学基金面上项目 81671917

上海市自然科学基金 19ZR1432200

详细信息
    通讯作者:

    谢挺,Email:doctortingxie@139.com

Feasibility study on the preparation of novel negative pressure materials for constructing new matrix of full-thickness skin defect wounds in rats

Funds: 

General Program of National Natural Science Foundation of China 81671917

Natural Science Foundation of Shanghai 19ZR1432200

More Information
  • 摘要:   目的  探索制备新型负压材料以构建大鼠全层皮肤缺损创面新生基质的可行性。  方法  采用实验研究方法。取负压治疗中常用的聚氨酯泡沫敷料,于扫描电子显微镜下观察其微观结构并测定其孔径(样本数为5)。分别以聚己内酯、聚丁二酸丁二醇酯(PBS)为原材料,采用熔体纺丝技术,以测得的聚氨酯泡沫敷料孔径为纺丝间距,分别以15、25、35 mm/s为纺丝速率制备聚己内酯负压材料和PBS负压材料,于扫描电子显微镜下观察制备的负压材料微观结构并测定其丝径,采用拉力试验机与复合材料试验机分别测定制备的负压材料和聚氨酯泡沫敷料的拉伸强度与拉伸模量(样本数均为5),以筛选后续制备负压材料的纺丝速率。将对数生长期的人皮肤成纤维细胞(Fb)分别与以筛选的纺丝速率制备的聚己内酯负压材料和PBS负压材料共培养,于共培养1、4、7 d,用活/死细胞检测试剂盒检测材料中细胞活性与黏附情况,用细胞计数试剂盒8法检测材料中细胞增殖水平(样本数为5)。于18只5~6周龄雌雄不限的SD大鼠背部各制备1个全层皮肤缺损创面,伤后即刻,将致伤大鼠按随机数字表法分为聚己内酯+聚氨酯组、PBS+聚氨酯组、单纯聚氨酯组(每组6只),用含相应成分材料覆盖创面,以-16.7 kPa负压进行持续负压吸引。分别于负压治疗7、14 d取每组3只大鼠,取创面组织与创面直接接触层材料(以下简称创面取材),行苏木精-伊红染色后观察肉芽组织生长及材料与创面结合情况,行Masson染色后观察胶原纤维沉积情况,采用免疫组织化学法检测并计数CD34、白细胞介素6(IL-6)阳性细胞。对数据行单因素方差分析、析因设计方差分析、LSD-t检验、Kruskal-Wallis H检验、Mann-Whitney U检验及Bonferroni校正。  结果  聚氨酯泡沫敷料微观上呈疏松多孔结构,孔径为(815±182)μm。以800 μm为后续负压材料制备中的纺丝间距。PBS负压材料与聚己内酯负压材料的微观结构均较为规则,层间垂直相通,纺丝连续且粗细均匀,但PBS负压材料纺丝较聚己内酯负压材料平直;不同纺丝速率下由同种原材料制备的负压材料微观结构无明显差别。以3种纺丝速率制备的聚己内酯负压材料的丝径相近(P>0.05),以25、35 mm/s的纺丝速率制备的PBS负压材料的丝径均明显小于以15 mm/s的纺丝速率制备的PBS负压材料(t值分别为4.99、6.40,P<0.01)。以3种纺丝速率制备的聚己内酯负压材料的拉伸强度、拉伸模量均相近(P>0.05);以15、25 mm/s的纺丝速率制备的PBS负压材料的拉伸强度均明显小于以35 mm/s的纺丝速率制备的PBS负压材料(t值分别为9.20、8.92,P<0.01),拉伸模量均明显小于以35 mm/s纺丝速率制备的PBS负压材料(t值分别为2.58、2.47,P<0.05)。后续选用35 mm/s的纺丝速率制备聚己内酯负压材料,选用15 mm/s的纺丝速率制备PBS负压材料。共培养1、4、7 d,在聚己内酯负压材料和PBS负压材料中黏附生长的人皮肤Fb数随时间延长而增多,2种材料间比较无明显差别。共培养1、7 d,2种负压材料中人皮肤Fb增殖水平均相近(P>0.05);共培养4 d,PBS负压材料中人皮肤Fb增殖水平显著高于聚己内酯负压材料(t=6.37,P<0.01)。负压治疗7 d,3组大鼠创面取材中材料均清晰可辨且均可见少量胶原纤维,单纯聚氨酯组大鼠创面取材中可见少量肉芽组织;负压治疗14 d,3组大鼠创面取材中均可见大量肉芽组织与大量胶原纤维,聚己内酯+聚氨酯组大鼠创面取材中材料与创面组织分辨不清。负压治疗7、14 d,单纯聚氨酯组大鼠创面取材中胶原纤维均较另外2组致密。负压治疗7 d,每400倍视野下,PBS+聚氨酯组大鼠创面取材中CD34阳性细胞数为(14.8±3.6)个,明显少于单纯聚氨酯组的(27.8±9.1)个(t=3.06,P<0.05);IL-6阳性细胞数为60(49,72)个,明显多于单纯聚氨酯组的44(38,50)个(Z=2.41,P<0.05)。负压治疗14 d,每400倍视野下,PBS+聚氨酯组大鼠创面取材中IL-6阳性细胞数为19(12,28)个,明显多于聚己内酯+聚氨酯组的3(1,10)个与单纯聚氨酯组的9(2,13)个(Z值分别为2.61、2.40,P<0.05)。  结论  制备的聚己内酯负压材料和PBS负压材料生物相容性好,均可成功构建大鼠全层皮肤缺损创面新生基质,其中聚己内酯负压材料总体上优于PBS负压材料。

     

  • 1  聚己内酯+聚氨酯组大鼠全层皮肤缺损创面的负压治疗模型制备过程。1A.制备大鼠背部全层皮肤缺损创面;1B.将聚己内酯负压材料作为创面直接接触层置于创面上;1C.在聚己内酯负压材料上放置聚氨酯泡沫敷料;1D.用自黏性薄膜封闭创面并连接负压导管装置

    2  聚氨酯泡沫敷料微观上呈疏松多孔结构,孔隙间互相连通 扫描电子显微镜×100,图中标尺为1 mm

    3  2种新型负压材料微观结构 扫描电子显微镜×100,图中标尺为1 mm。3A.以纺丝速率35 mm/s制备的聚己内酯负压材料呈规则网格结构,纺丝连续且粗细均匀;3B.以纺丝速率25 mm/s制备的聚丁二酸丁二醇酯负压材料微观结构大体与图3A相近,纺丝较图3A平直

    4  以不同纺丝速率制备的2种新型负压材料的拉伸强度与拉伸模量比较(样本数为5,x¯±s)。4A.聚己内酯负压材料的拉伸强度;4B.聚己内酯负压材料的拉伸模量;4C.聚丁二酸丁二醇酯(PBS)负压材料的拉伸强度;4D.PBS负压材料的拉伸模量

    注:与纺丝速率为35 mm/s相比,aP<0.01,bP<0.05

    5  于激光扫描共聚焦显微镜下观察人皮肤成纤维细胞分别与2种新型负压材料共培养各时间点细胞活性与黏附情况 钙黄绿素×100,图中标尺为500 μm。5A、5B、5C.分别为共培养1、4、7 d时聚己内酯负压材料中细胞生长情况,图5A中细胞黏附数较少,图5B中细胞黏附数较图5A增加,图5C中细胞黏附数最多且部分材料交叉处细胞融合成片;5D、5E、5F.分别为共培养1、4、7 d时聚丁二酸丁二醇酯负压材料中细胞生长情况,图5D、5E、5F中细胞活性与黏附情况分别与图5A、5B、5C相近

    注:活细胞阳性染色为绿色

    6  3组全层皮肤缺损大鼠负压治疗各时间点创面组织和创面直接接触层材料中肉芽组织生长和材料与创面组织结合情况及胶原纤维排列情况 图中标尺为100 μm。6A、6B、6C与6D、6E、6F.分别为负压治疗7 d与14 d时聚己内酯+聚氨酯组、PBS+聚氨酯组、单纯聚氨酯组中肉芽组织生长和材料与创面组织结合情况,图6A、6B、6C中材料均清晰可辨,图6C可见少量肉芽组织(粉色),图6D中肉芽组织较图6A增多且材料与创面组织分辨不清,图6E、6F中可见大量新生肉芽组织且材料均可辨认 苏木精-伊红×200;6G、6H、6I与6J、6K、6L.分别为负压治疗7 d与14 d时聚己内酯+聚氨酯组、PBS+聚氨酯组、单纯聚氨酯组中胶原纤维排列情况,图6G与6H中可见少量胶原纤维(蓝色),图6I中胶原纤维较图6G、6H致密,图6J、6K、6L中胶原纤维分别较图6G、6H、6I致密,且图6L中胶原纤维较图6J、6K致密 Masson×200

    注:聚己内酯+聚氨酯组、聚丁二酸丁二醇酯(PBS)+聚氨酯组、单纯聚氨酯组大鼠创面上分别放置含相应成分的材料作为创面直接接触层,各材料上均另放置聚氨酯泡沫敷料;图中箭头指示残余材料

    7  3组全层皮肤缺损大鼠负压治疗各时间点创面组织和创面直接接触层材料中CD34和IL-6阳性细胞分布 辣根过氧化物酶-二氨基联苯胺-苏木精×400,图中标尺为50 μm。7A、7B、7C与7D、7E、7F.分别为负压治疗7 d与14 d时聚己内酯+聚氨酯组、PBS+聚氨酯组、单纯聚氨酯组中CD34阳性细胞分布,图7A中CD34阳性细胞数较多,图7B中CD34阳性细胞数与图7A相近,图7C中CD34阳性细胞数多于图7B,图7D、7E、7F中CD34阳性细胞数分别较图7A、7B、7C增多;7G、7H、7I与7J、7K、7L.分别为负压治疗7 d与14 d时聚己内酯+聚氨酯组、PBS+聚氨酯组、单纯聚氨酯组中IL-6阳性细胞分布,图7G中IL-6阳性细胞数较多,图7H中IL-6阳性细胞数与图7G相近但明显多于图7I,图7J中IL-6阳性细胞数较图7G减少,图7K中IL-6阳性细胞数较图7H减少且明显多于图7J,图7L中IL-6阳性细胞数较图7I减少且明显少于图7K

    注:聚己内酯+聚氨酯组、聚丁二酸丁二醇酯(PBS)+聚氨酯组、单纯聚氨酯组大鼠创面上分别放置含相应成分的材料作为创面直接接触层,各材料上均另放置聚氨酯泡沫敷料;细胞阳性染色为棕黄色;IL-6为白细胞介素6

    表1  制备2种新型负压材料的相关参数

    材料名称电压(kV)熔融温度(℃)聚焦高度(mm)针头内径(mm)材料厚度(mm)
    聚己内酯5~670~751400.411
    聚丁二酸丁二醇酯3~4175~1901400.411
    下载: 导出CSV

    表2  人皮肤成纤维细胞分别与2种新型负压材料共培养各时间点细胞增殖水平比较(x¯±s

    材料名称样本数1 d4 d7 d
    聚己内酯负压材料50.341±0.0250.676±0.0201.370±0.175
    聚丁二酸丁二醇酯负压材料50.333±0.0300.816±0.0451.262±0.109
    t0.466.371.18
    P0.660<0.0010.274
    注:表中数据为吸光度值,表示细胞增殖水平;处理因素主效应,F=0.06,P=0.808;时间因素主效应,F=313.86,P<0.001;两者交互作用,F=5.04,P=0.015
    下载: 导出CSV

    表3  3组全层皮肤缺损大鼠负压治疗各时间点创面组织和创面直接接触层材料中CD34和IL-6阳性细胞数比较(个)

    组别样本数CD34阳性细胞数(x¯±sIL-6阳性细胞数[Mminmax)]
    7 d14 d7 d14 d
    聚己内酯+聚氨酯组518.2±6.232.2±5.953(42,62)3(1,10)
    PBS+聚氨酯组514.8±3.629.6±2.360(49,72)19(12,28)
    单纯聚氨酯组527.8±9.138.8±7.744(38,50)9(2,13)
    统计量值1t=0.80t=0.71Z=1.26Z=2.61
    P1>0.999>0.9990.6660.024
    统计量值2t=2.26t=1.81Z=1.47Z=1.26
    P20.1290.2860.4530.666
    统计量值3t=3.06t=2.52Z=2.41Z=2.40
    P30.0300.0800.0480.048
    注:于400倍视野下计数;IL-6为白细胞介素6;CD34阳性细胞数的处理因素主效应,F=8.43,P=0.002;时间因素主效应,F=33.73,P<0.001;两者交互作用,F=0.26,P=0.776;统计量值1、P1值,统计量值2、P2值,统计量值3、P3值分别为聚己内酯+聚氨酯组和聚丁二酸丁二醇酯(PBS)+聚氨酯组、聚己内酯+聚氨酯组和单纯聚氨酯组、PBS+聚氨酯组和单纯聚氨酯组各指标各时间点两两比较所得
    下载: 导出CSV

      《中华烧伤与创面修复杂志》第六届编辑委员会编辑委员名单

    终身顾问盛志勇程天民王正国樊代明付小兵夏照帆卞修武顾晓松李校堃
    顾 问肖光夏杨宗城汪仕良孙永华柴家科黄跃生岑瑛王旭
    名誉总编辑彭毅志
    总编辑罗高兴
    以下按姓氏拼音排序
    副总编辑郭光华韩春茂胡大海郇京宁梁光萍刘毅吕国忠吴军谢卫国
    姚咏明
    常务编辑委员官浩贺伟峰李孝建李宗瑜刘琰陆树良马显杰申传安沈余明
    孙炳伟谭 谦王达利王一兵夏成德肖仕初徐庆连于家傲袁志强
    张丕红张庆富张逸章一新
    编辑委员巴特陈国贤陈炯陈俊杰陈欣陈旭陈旭林陈昭宏程飚
    崔正军邓 君范锟铻方勇冯世海冯正直官浩郭光华韩春茂
    韩军涛郝岱峰贺伟峰胡大海郇京宁黄沙霍然姜笃银金培生
    赖文雷晋李德绘李小兵李晓亮李孝建李学拥李 毅李智
    李宗瑜梁光萍刘文军刘小龙刘旭盛刘琰刘毅陆树良罗高兴
    吕大伦吕国忠马朋林马显杰潘云川彭曦齐鸿燕邱林荣新洲
    申传安沈余明沈运彪史春梦宋保强宋国栋宋华培孙炳伟孙天骏
    谭谦唐洪泰陶克童亚林王达利王德运王光毅王凌峰王新刚
    王杨王一兵魏在荣吴健吴军吴银生夏成德肖厚安肖健
    肖仕初谢挺谢卫国徐庆连颜洪杨磊姚咏明于家傲袁志强
    曾元临詹剑华张恒术张家平张建祥张明华张丕红张 勤张庆富
    张逸章一新赵耀华赵永健朱世辉
    以下按英文首字母排序
    Chong Si Jack(新加坡) David N. Herndon(美国) Fiona Wood(澳大利亚)
    Malcolm Xing(邢孟秋,加拿大) Naiem S. Moiemen(英国) Ronald G. Tompkins(美国)
    Steven E. Wolf(美国) Tina L. Palmieri(美国) Yong-Ming Yu(尤永明,美国)
    下载: 导出CSV
  • [1] HanG,CeilleyR.Chronic wound healing: a review of current management and treatments[J].Adv Ther,2017,34(3):599-610.DOI: 10.1007/s12325-017-0478-y.
    [2] MenkeNB,WardKR,WittenTM,et al.Impaired wound healing[J].Clin Dermatol,2007,25(1):19-25.DOI: 10.1016/j.clindermatol.2006.12.005.
    [3] MandellJC,KhuranaB,SmithJT,et al.Osteomyelitis of the lower extremity: pathophysiology, imaging, and classification, with an emphasis on diabetic foot infection[J].Emerg Radiol,2018,25(2):175-188.DOI: 10.1007/s10140-017-1564-9.
    [4] MueckKM,KaoLS.Patients at high-risk for surgical site infection[J].Surg Infect (Larchmt),2017,18(4):440-446.DOI: 10.1089/sur.2017.058.
    [5] EomY,WooKJ.Negative-pressure wound therapy for managing complicated wounds at extracorporeal membrane oxygenation sites[J].Adv Skin Wound Care,2019,32(4):183-189.DOI: 10.1097/01.ASW.0000553596.11034.d7.
    [6] Sandy-HodgettsK,LeslieGD,ParsonsR,et al.Prevention of postsurgical wound dehiscence after abdominal surgery with NPWT: a multicentre randomised controlled trial protocol[J].J Wound Care,2017,26(Suppl 2):S23-26.DOI: 10.12968/jowc.2017.26.Sup2.S23.
    [7] LiuZ,DumvilleJC,HinchliffeRJ,et al.Negative pressure wound therapy for treating foot wounds in people with diabetes mellitus[J].Cochrane Database Syst Rev,2018,10(10):CD010318.DOI: 10.1002/14651858.CD010318.pub3.
    [8] BiermannN,GeisslerEK,BrixE,et al.Pressure distribution and flow characteristics during negative pressure wound therapy[J].J Tissue Viability,2020,29(1):32-36.DOI: 10.1016/j.jtv.2019.12.004.
    [9] MazochM,MontgomeryC.Retained wound vacuum foam in non-healing wounds: a real possibility[J].J Wound Care,2015,24(6 Suppl):S18-20.DOI: 10.12968/jowc.2015.24.Sup6.S18.
    [10] AnagnostakosK,ThieryA,SahanI.Retained negative pressure wound therapy foams as a cause of infection persistence[J].Adv Wound Care (New Rochelle),2021,10(12):699-710.DOI: 10.1089/wound.2019.1088.
    [11] AnesäterE,BorgquistO,HedströmE,et al.The influence of different sizes and types of wound fillers on wound contraction and tissue pressure during negative pressure wound therapy[J].Int Wound J,2011,8(4):336-342.DOI: 10.1111/j.1742-481X.2011.00790.x.
    [12] BiH,JinY.Current progress of skin tissue engineering: seed cells, bioscaffolds, and construction strategies[J/OL].Burns Trauma,2013,1(2):63-72[2021-04-01]. https://pubmed.ncbi.nlm.nih.gov/27574627/.DOI: 10.4103/2321-3868.118928.
    [13] Rahmani Del BakhshayeshA,AnnabiN,KhalilovR,et al.Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering[J].Artif Cells Nanomed Biotechnol,2018,46(4):691-705.DOI: 10.1080/21691401.2017.1349778.
    [14] YaoQ,CosmeJG,XuT,et al.Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation[J].Biomaterials,2017,115:115-127.DOI: 10.1016/j.biomaterials.2016.11.018.
    [15] 林皓,刘瑞来,齐小宝,等.PLLA/PCL复合纳米纤维三维多孔支架的制备及细胞相容性研究[J].高分子通报,2019(6):60-67.DOI: 10.14028/j.cnki.1003-3726.2019.06.007.
    [16] SoccioM,DominiciF,QuattrosoldiS,et al.PBS-based green copolymer as an efficient compatibilizer in thermoplastic inedible wheat flour/poly(butylene succinate) blends[J].Biomacromolecules,2020,21(8):3254-3269.DOI: 10.1021/acs.biomac.0c00701.
    [17] LiY,ZhangM,WengY,et al.Effects of microencapsulated abamectin on the mechanical, cross-linking, and release properties of PBS[J].Colloids Surf B Biointerfaces,2020,196:111290.DOI: 10.1016/j.colsurfb.2020.111290.
    [18] BakhshandehB,ZarrintajP,OftadehMO,et al.Tissue engineering; strategies, tissues, and biomaterials[J].Biotechnol Genet Eng Rev,2017,33(2):144-172.DOI: 10.1080/02648725.2018.1430464.
    [19] ZhangY,Enhejirigala,YaoB,et al.Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles[J/OL].Burns Trauma,2021,9:tkab013[2022-04-01]. https://pubmed.ncbi.nlm.nih.gov/34213515/.DOI: 10.1093/burnst/tkab013.
    [20] OhHJ,KimDK,ChoiYC,et al.Fabrication of piezoelectric poly(L-lactic acid)/BaTiO3 fibre by the melt-spinning process[J].Sci Rep,2020,10(1):16339.DOI: 10.1038/s41598-020-73261-3.
    [21] 林志骁,张玉恒,黄容,等.负载大鼠表皮干细胞的聚己内酯-乙酸纤维素纳米纤维支架对大鼠全层皮肤缺损创面愈合的影响及其机制[J].中华烧伤杂志,2021,37(5):460-468.DOI: 10.3760/cma.j.cn501120-20210104-00005.
    [22] HuP,ChiariniA,WuJ,et al.Exosomes of adult human fibroblasts cultured on 3D silk fibroin nonwovens intensely stimulate neoangiogenesis[J/OL].Burns Trauma,2021,9:tkab003 [2022-04-01]. https://pubmed.ncbi.nlm.nih.gov/34212056/.DOI: 10.1093/burnst/tkab003.
    [23] Iheozor-EjioforZ,NewtonK,DumvilleJC,et al.Negative pressure wound therapy for open traumatic wounds[J].Cochrane Database Syst Rev,2018,7(7):CD012522.DOI: 10.1002/14651858.CD012522.pub2.
    [24] AgarwalP,KukreleR,SharmaD.Vacuum assisted closure (VAC)/negative pressure wound therapy (NPWT) for difficult wounds: a review[J].J Clin Orthop Trauma,2019,10(5):845-848.DOI: 10.1016/j.jcot.2019.06.015.
    [25] RodriguesM,KosaricN,BonhamCA,et al.Wound healing: a cellular perspective[J].Physiol Rev,2019,99(1):665-706.DOI: 10.1152/physrev.00067.2017.
    [26] BergerP,de BieD,MollFL,et al.Negative pressure wound therapy on exposed prosthetic vascular grafts in the groin[J].J Vasc Surg,2012,56(3):714-720.DOI: 10.1016/j.jvs.2012.02.007.
    [27] DessyLA,SerratoreF,CorriasF,et al.Retention of polyurethane foam fragments during VAC therapy: a complication to be considered[J].Int Wound J,2015,12(2):132-136.DOI: 10.1111/iwj.12062.
    [28] MalmsjöM,GustafssonL,LindstedtS,et al.Negative pressure wound therapy-associated tissue trauma and pain: a controlled in vivo study comparing foam and gauze dressing removal by immunohistochemistry for substance P and calcitonin gene- related peptide in the wound edge[J].Ostomy Wound Manage,2011,57(12):30-35.
    [29] LohML,GohBKL,KongY,et al.Combination therapy of oxidised regenerated cellulose/collagen/silver dressings with negative pressure wound therapy for coverage of exposed critical structures in complex lower-extremity wounds[J].Int Wound J,2020,17(5):1356-1365.DOI: 10.1111/iwj.13406.
    [30] BauermeisterAJ,ZuriarrainA,NewmanMI.Three-dimensional printing in plastic and reconstructive surgery: a systematic review[J].Ann Plast Surg,2016,77(5):569-576.DOI: 10.1097/SAP.0000000000000671.
    [31] AravinthanA,ParkJK,HossainMA,et al.Collagen-based sponge hastens wound healing via decrease of inflammatory cytokines[J].3 Biotech,2018,8(12):487.DOI: 10.1007/s13205-018-1497-3.
    [32] MaZ,LiZ,ShouK,et al.Negative pressure wound therapy: regulating blood flow perfusion and microvessel maturation through microvascular pericytes[J].Int J Mol Med,2017,40(5):1415-1425.DOI: 10.3892/ijmm.2017.3131.
    [33] Sivan-LoukianovaE,AwadOA,StepanovicV,et al.CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds[J].J Vasc Res,2003,40(4):368-377.DOI: 10.1159/000072701.
    [34] SapienzaP,MingoliA,BorrelliV,et al.Inflammatory biomarkers, vascular procedures of lower limbs, and wound healing[J].Int Wound J,2019,16(3):716-723.DOI: 10.1111/iwj.13086.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  45
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01

目录

    /

    返回文章
    返回