留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外泌汗腺汗液分泌离子通道调控机制研究进展

沈嘉生 许永安

沈嘉生, 许永安. 外泌汗腺汗液分泌离子通道调控机制研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(8): 794-798. DOI: 10.3760/cma.j.cn501120-20210517-00191.
引用本文: 沈嘉生, 许永安. 外泌汗腺汗液分泌离子通道调控机制研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(8): 794-798. DOI: 10.3760/cma.j.cn501120-20210517-00191.
Shen JS,Xu YA.Research advances on the regulatory mechanism of sweat secretion ion channels of eccrine sweat glands[J].Chin J Burns Wounds,2022,38(8):794-798.DOI: 10.3760/cma.j.cn501120-20210517-00191.
Citation: Shen JS,Xu YA.Research advances on the regulatory mechanism of sweat secretion ion channels of eccrine sweat glands[J].Chin J Burns Wounds,2022,38(8):794-798.DOI: 10.3760/cma.j.cn501120-20210517-00191.

外泌汗腺汗液分泌离子通道调控机制研究进展

doi: 10.3760/cma.j.cn501120-20210517-00191
基金项目: 

国家自然科学基金面上项目 81571916, 81372079

国家自然科学基金青年科学基金项目 81201478

详细信息
    通讯作者:

    许永安,Email:xuyongan2000@163.com

Research advances on the regulatory mechanism of sweat secretion ion channels of eccrine sweat glands

Funds: 

General Program of National Natural Science Foundation of China 81571916, 81372079

Youth Science Foundation Project of National Natural Science Foundation of China 81201478

More Information
  • 摘要: 汗腺在人体皮肤中分布广泛,其中外泌汗腺主要起散热排汗作用。汗液分泌由神经系统调控,包括分泌部分泌与导管部重吸收2个过程,涉及钙离子通道、钾离子通道、钠钾氯协同转运蛋白1、Best2蛋白、水通道蛋白5、囊性纤维化跨膜转导调节因子、上皮钠离子通道等多种离子通道和蛋白。该文将对涉及外泌汗腺汗液分泌的神经传导体系、各类离子通道等进行综述,以期为损伤汗腺再生修复及干细胞转化研究提供一定的理论依据。

     

  • 参考文献(33)

    [1] Saint-CriqV, GrayMA. Role of CFTR in epithelial physiology[J]. Cell Mol Life Sci, 2017, 74(1):93-115. DOI: 10.1007/s00018-016-2391-y.
    [2] HuY, ConverseC, LyonsMC, et al. Neural control of sweat secretion: a review[J]. Br J Dermatol, 2018, 178(6):1246-1256. DOI: 10.1111/bjd.15808.
    [3] 刘煜凡, 黄沙, 付小兵. 皮肤附属器汗腺发育及功能的机制研究[J]. 生命科学, 2020, 32(3):219-226. DOI: 10.13376/j.cbls/2020030.
    [4] DiaoJ, LiuJ, WangS, et al. Sweat gland organoids contribute to cutaneous wound healing and sweat gland regeneration[J]. Cell Death Dis, 2019, 10(3):238. DOI: 10.1038/s41419-019-1485-5.
    [5] KlakaP, GrüdlS, BanowskiB, et al. A novel organotypic 3D sweat gland model with physiological functionality[J]. PLoS One, 2017, 12(8):e0182752. DOI: 10.1371/journal.pone.0182752.
    [6] SasakiS, WatanabeJ, OhtakiH, et al. Pituitary adenylate cyclase-activating polypeptide promotes eccrine gland sweat secretion[J]. Br J Dermatol, 2017, 176(2):413-422. DOI: 10.1111/bjd.14885.
    [7] StevensLM, LandisSC. Development and properties of the secretory response in rat sweat glands: relationship to the induction of cholinergic function in sweat gland innervation[J]. Dev Biol, 1987, 123(1):179-190. DOI: 10.1016/0012-1606(87)90440-4.
    [8] GrantMP, LandisSC, SiegelRE. The molecular and pharmacological properties of muscarinic cholinergic receptors expressed by rat sweat glands are unaltered by denervation[J]. J Neurosci, 1991, 11(12):3763-3771. DOI: 10.1523/JNEUROSCI.11-12-03763.1991.
    [9] AlzayadyKJ, WangL, ChandrasekharR, et al. Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca2+ release[J]. Sci Signal, 2016, 9(422):ra35. DOI: 10.1126/scisignal.aad6281.
    [10] KlarJ, HisatsuneC, BaigSM, et al. Abolished InsP3R2 function inhibits sweat secretion in both humans and mice[J]. J Clin Invest, 2014, 124(11):4773-4780. DOI: 10.1172/JCI70720.
    [11] SatoK, SatoF. Role of calcium in cholinergic and adrenergic mechanisms of eccrine sweat secretion[J]. Am J Physiol, 1981, 241(3):C113-120. DOI: 10.1152/ajpcell.1981.241.3.C113.
    [12] Metzler-WilsonK, SammonsDL, OssimMA, et al. Extracellular calcium chelation and attenuation of calcium entry decrease in vivo cholinergic-induced eccrine sweating sensitivity in humans[J]. Exp Physiol, 2014, 99(2):393-402. DOI: 10.1113/expphysiol.2013.076547.
    [13] ConcepcionAR, VaethM, WagnerLE, et al. Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function[J]. J Clin Invest, 2016, 126(11):4303-4318. DOI: 10.1172/JCI89056.
    [14] DerouicheS, TakayamaY, MurakamiM, et al. TRPV4 heats up ANO1-dependent exocrine gland fluid secretion[J]. FASEB J, 2018, 32(4):1841-1854. DOI: 10.1096/fj.201700954R.
    [15] DelporteC. Aquaporins and gland secretion[J]. Adv Exp Med Biol, 2017, 969:63-79. DOI: 10.1007/978-94-024-1057-0_4.
    [16] SatoF, SatoK. Effect of periglandular ionic composition and transport inhibitors on rhesus monkey eccrine sweat gland function in vitro[J]. J Physiol, 1987, 393:195-212. DOI: 10.1113/jphysiol.1987.sp016819.
    [17] Ertongur-FauthT, HochheimerA, BuescherJM, et al. A novel TMEM16A splice variant lacking the dimerization domain contributes to calcium-activated chloride secretion in human sweat gland epithelial cells[J]. Exp Dermatol, 2014, 23(11):825-831. DOI: 10.1111/exd.12543.
    [18] OwjiAP, ZhaoQ, JiC, et al. Structural and functional characterization of the bestrophin-2 anion channel[J]. Nat Struct Mol Biol, 2020, 27(4):382-391. DOI: 10.1038/s41594-020-0402-z.
    [19] CuiCY, ChildressV, PiaoY, et al. Forkhead transcription factor FoxA1 regulates sweat secretion through Bestrophin 2 anion channel and Na-K-Cl cotransporter 1[J]. Proc Natl Acad Sci U S A, 2012, 109(4):1199-1203. DOI: 10.1073/pnas.1117213109.
    [20] MackGW, SmithBS, RowlandB. TEA-sensitive K+ channels and human eccrine sweat gland output[J]. J Appl Physiol (1985), 2019, 127(4):921-929. DOI: 10.1152/japplphysiol.00308.2019.
    [21] CuiCY, SimaJ, YinM, et al. Identification of potassium and chloride channels in eccrine sweat glands[J]. J Dermatol Sci, 2016, 81(2):129-131. DOI: 10.1016/j.jdermsci.2015.11.001.
    [22] InoueR. New findings on the mechanism of perspiration including aquaporin-5 water channel[J]. Curr Probl Dermatol, 2016, 51:11-21. DOI: 10.1159/000446754.
    [23] NejsumLN, KwonTH, JensenUB, et al. Functional requirement of aquaporin-5 in plasma membranes of sweat glands[J]. Proc Natl Acad Sci U S A, 2002, 99(1):511-516. DOI: 10.1073/pnas.012588099.
    [24] SongY, SonawaneN, VerkmanAS. Localization of aquaporin-5 in sweat glands and functional analysis using knockout mice[J]. J Physiol, 2002, 541(Pt 2):561-568. DOI: 10.1113/jphysiol.2001.020180.
    [25] HanukogluI, BoggulaVR, VaknineH, et al. Expression of epithelial sodium channel (ENaC) and CFTR in the human epidermis and epidermal appendages[J]. Histochem Cell Biol, 2017, 147(6):733-748. DOI: 10.1007/s00418-016-1535-3.
    [26] RauhR, HoernerC, KorbmacherC. δβγ-ENaC is inhibited by CFTR but stimulated by cAMP in Xenopus laevis oocytes[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312(2):L277-L287. DOI: 10.1152/ajplung.00375.2016.
    [27] HeM, ZhouT, NiuY, et al. The protease corin regulates electrolyte homeostasis in eccrine sweat glands[J]. PLoS Biol, 2021, 19(2):e3001090. DOI: 10.1371/journal.pbio.3001090.
    [28] 张静娟, 王茂英, 赵洁, 等. 干细胞在汗腺再生中的应用研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(3):296-300. DOI: 10.3760/cma.j.cn501120-20210123-00033.
    [29] 郎东浩, 巴特, 曹胜军, 等. 影响汗腺发育的信号通路及其参与汗腺样细胞体外重建的研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(2):195-200. DOI: 10.3760/cma.j.cn501120-20201020-00442.
    [30] SongW, YaoB, ZhuD, et al. 3D-bioprinted microenvironments for sweat gland regeneration[J/OL]. Burns Trauma, 2022, 10:tkab044[2022-06-06]. https://pubmed.ncbi.nlm.nih.gov/35071651/.DOI: 10.1093/burnst/tkab044.
    [31] WangR, WangY, YaoB, et al. Redirecting differentiation of mammary progenitor cells by 3D bioprinted sweat gland microenvironment[J/OL]. Burns Trauma, 2019, 7:29[2021-05-17]. https://pubmed.ncbi.nlm.nih.gov/31559316/.DOI: 10.1186/s41038-019-0167-y.
    [32] ZhangY, Enhejirigala, YaoB, et al. Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles[J/OL]. Burns Trauma, 2021, 9:tkab013[2022-06-17]. https://pubmed.ncbi.nlm.nih.gov/34213515/.DOI: 10.1093/burnst/tkab013.
    [33] 朱冬振, 王一惠, 王睿, 等. 外源性肿瘤坏死因子α对三维环境下小鼠间充质干细胞向汗腺细胞分化的影响及机制[J]. 中华烧伤杂志, 2020, 36(3):187-194. DOI: 10.3760/cma.j.cn501120-20200105-00005.
  • 加载中
计量
  • 文章访问数:  379
  • HTML全文浏览量:  122
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17

目录

    /

    返回文章
    返回