[1] |
YuQ, QiaoGH, WangM, et al. Stem cell-based therapy for diabetic foot ulcers[J]. Front Cell Dev Biol, 2022,10:812262. DOI: 10.3389/fcell.2022.812262.
|
[2] |
DoğruelH, AydemirM, BalciMK. Management of diabetic foot ulcers and the challenging points: an endocrine view[J]. World J Diabetes, 2022,13(1):27-36. DOI: 10.4239/wjd.v13.i1.27.
|
[3] |
HollJ, KowalewskiC, ZimekZ, et al. Chronic diabetic wounds and their treatment with skin substitutes[J]. Cells, 2021,10(3):655. DOI: 10.3390/cells10030655.
|
[4] |
TheocharidisG, ThomasBE, SarkarD, et al. Single cell transcriptomic landscape of diabetic foot ulcers[J]. Nat Commun, 2022,13(1):181. DOI: 10.1038/s41467-021-27801-8.
|
[5] |
WangA, LvG, ChengX, et al. Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition)[J/OL]. Burns Trauma, 2020, 8:tkaa017[2022-04-01]. https://pubmed.ncbi.nlm.nih.gov/32685563/. DOI: 10.1093/burnst/tkaa017.
|
[6] |
JiS, LiuX, HuangJ, et al. Consensus on the application of negative pressure wound therapy of diabetic foot wounds[J/OL]. Burns Trauma, 2021, 9:tkab018[2022-04-02]. https://pubmed.ncbi.nlm.nih.gov/34212064/.DOI: 10.1093/burnst/tkab018.
|
[7] |
JeffcoateWJ, VileikyteL, BoykoEJ, et al. Current challenges and opportunities in the prevention and management of diabetic foot ulcers[J]. Diabetes Care, 2018,41(4):645-52. DOI: 10.2337/dc17-1836.
|
[8] |
BuchadeS, DesaiS, BhondeR, et al. Stem cells: a golden therapy for diabetic wounds[J]. Curr Diabetes Rev, 2021,17(2):156-160. DOI: 10.2174/1573399816666200716200450.
|
[9] |
CaoY, GangX, SunC, et al. Mesenchymal stem cells improve healing of diabetic foot ulcer[J]. J Diabetes Res, 2017,2017:9328347. DOI: 10.1155/2017/9328347.
|
[10] |
XuSM, LiangT. Clinical observation of the application of autologous peripheral blood stem cell transplantation for the treatment of diabetic foot gangrene[J]. Exp Ther Med, 2016,11(1):283-288. DOI: 10.3892/etm.2015.2888.
|
[11] |
FooJB, LooiQH, ChongPP, et al. Comparing the therapeutic potential of stem cells and their secretory products in regenerative medicine[J]. Stem Cells Int, 2021,2021:2616807. DOI: 10.1155/2021/2616807.
|
[12] |
GoreckaJ, KostiukV, FereydooniA, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing[J]. Stem Cell Res Ther, 2019,10(1):87. DOI: 10.1186/s13287-019-1185-1.
|
[13] |
TakahashiK, TanabeK, OhnukiM, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007,131(5):861-872. DOI: 10.1016/j.cell.2007.11.019.
|
[14] |
TakahashiK, YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006,126(4):663-676. DOI: 10.1016/j.cell.2006.07.024.
|
[15] |
HaridhasapavalanKK, BorgohainMP, DeyC, et al. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells[J]. Gene, 2019,686:146-159. DOI: 10.1016/j.gene.2018.11.069.
|
[16] |
LopesL, SetiaO, AurshinaA, et al. Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research[J]. Stem Cell Res Ther, 2018,9(1):188. DOI: 10.1186/s13287-018-0938-6.
|
[17] |
SinghVK, KalsanM, KumarN, et al. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery[J]. Front Cell Dev Biol, 2015,3:2. DOI: 10.3389/fcell.2015.00002.
|
[18] |
ClaytonZE, TanRP, MiravetMM, et al. Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model[J]. Biosci Rep, 2018,38(4):BSR20180563. DOI: 10.1042/BSR20180563.
|
[19] |
WangAYL. Human induced pluripotent stem cell-derived exosomes as a new therapeutic strategy for various diseases[J]. Int J Mol Sci, 2021,22(4):1769. DOI: 10.3390/ijms22041769.
|
[20] |
LiuX, LiQ, NiuX, et al. Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis[J]. Int J Biol Sci, 2017,13(2):232-244. DOI: 10.7150/ijbs.16951.
|
[21] |
MartinPE, O'ShaughnessyEM, WrightCS, et al. The potential of human induced pluripotent stem cells for modelling diabetic wound healing in vitro[J]. Clin Sci (Lond), 2018, 132(15):1629-1643. DOI: 10.1042/CS20171483.
|
[22] |
ChoudhuryS, SurendranN, DasA. Recent advances in the induced pluripotent stem cell-based skin regeneration[J]. Wound Repair Regen, 2021,29(5):697-710. DOI: 10.1111/wrr.12925.
|
[23] |
HoffmannD, SchottJW, GeisFK, et al. Detailed comparison of retroviral vectors and promoter configurations for stable and high transgene expression in human induced pluripotent stem cells[J]. Gene Ther, 2017,24(5):298-307. DOI: 10.1038/gt.2017.20.
|
[24] |
JohnsonWE. Origins and evolutionary consequences of ancient endogenous retroviruses[J]. Nat Rev Microbiol, 2019,17(6):355-370. DOI: 10.1038/s41579-019-0189-2.
|
[25] |
HouP, LiY, ZhangX, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013,341(6146):651-654. DOI: 10.1126/science.1239278.
|
[26] |
KaushikK, DasA. Endothelial progenitor cell therapy for chronic wound tissue regeneration[J]. Cytotherapy, 2019,21(11):1137-1150. DOI: 10.1016/j.jcyt.2019.09.002.
|
[27] |
KimKL, SongSH, ChoiKS, et al. Cooperation of endothelial and smooth muscle cells derived from human induced pluripotent stem cells enhances neovascularization in dermal wounds[J]. Tissue Eng Part A, 2013,19(21/22):2478-2485. DOI: 10.1089/ten.TEA.2012.0768.
|
[28] |
DashBC, XuZ, LinL, et al. Stem cells and engineered scaffolds for regenerative wound healing[J]. Bioengineering (Basel), 2018,5(1):23. DOI: 10.3390/bioengineering5010023.
|
[29] |
JanuszykM, ChenK, HennD, et al. Characterization of diabetic and non-diabetic foot ulcers using single-cell RNA-sequencing[J]. Micromachines (Basel), 2020,11(9):815. DOI: 10.3390/mi11090815.
|
[30] |
KashpurO, SmithA, Gerami-NainiB, et al. Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes[J]. FASEB J, 2019,33(1):1262-1277. DOI: 10.1096/fj.201801059.
|
[31] |
Gerami-NainiB, SmithA, MaioneAG, et al. Generation of induced pluripotent stem cells from diabetic foot ulcer fibroblasts using a nonintegrative Sendai virus[J]. Cell Reprogram, 2016,18(4):214-223. DOI: 10.1089/cell.2015.0087.
|
[32] |
CassidyFC, ShortissC, MurphyCG, et al. Impact of type 2 diabetes mellitus on human bone marrow stromal cell number and phenotypic characteristics[J]. Int J Mol Sci, 2020,21(7):2476. DOI: 10.3390/ijms21072476.
|
[33] |
NakayamaC, FujitaY, MatsumuraW, et al. The development of induced pluripotent stem cell-derived mesenchymal stem/stromal cells from normal human and RDEB epidermal keratinocytes[J]. J Dermatol Sci, 2018,91(3):301-310. DOI: 10.1016/j.jdermsci.2018.06.004.
|
[34] |
ShenYI, ChoH, PapaAE, et al. Engineered human vascularized constructs accelerate diabetic wound healing[J]. Biomaterials, 2016,102:107-119. DOI: 10.1016/j.biomaterials.2016.06.009.
|
[35] |
TanRP, ChanAHP, LennartssonK, et al. Integration of induced pluripotent stem cell-derived endothelial cells with polycaprolactone/gelatin-based electrospun scaffolds for enhanced therapeutic angiogenesis[J]. Stem Cell Res Ther, 2018,9(1):70. DOI: 10.1186/s13287-018-0824-2.
|
[36] |
XiaS, WengT, JinR, et al. Curcumin-incorporated 3D bioprinting gelatin methacryloyl hydrogel reduces reactive oxygen species-induced adipose-derived stem cell apoptosis and improves implanting survival in diabetic wounds[J/OL]. Burns Trauma, 2022, 10:tkac001[2022-04-06]. https://pubmed.ncbi.nlm.nih.gov/35291229/. DOI: 10.1093/burnst/tkac001.
|
[37] |
YasudaS, KusakawaS, KurodaT, et al. Tumorigenicity-associated characteristics of human iPS cell lines[J]. PLoS One, 2018,13(10):e0205022. DOI: 10.1371/journal.pone.0205022.
|
[38] |
QiaoY, AgboolaOS, HuX, et al. Tumorigenic and immunogenic properties of induced pluripotent stem cells: a promising cancer vaccine[J]. Stem Cell Rev Rep, 2020,16(6):1049-1061. DOI: 10.1007/s12015-020-10042-5.
|
[39] |
DashBC, KorutlaL, VallabhajosyulaP, et al. Unlocking the potential of induced pluripotent stem cells for wound healing: the next frontier of regenerative medicine[J]. Adv Wound Care (New Rochelle), 2022,11(11):622-638. DOI: 10.1089/wound.2021.0049.
|
[40] |
KobayashiH, EbisawaK, KambeM, et al. Effects of exosomes derived from the induced pluripotent stem cells on skin wound healing[J]. Nagoya J Med Sci, 2018,80(2):141-153. DOI: 10.18999/nagjms.80.2.141.
|
[41] |
LeeMO, MoonSH, JeongHC, et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules[J]. Proc Natl Acad Sci U S A, 2013,110(35):E3281-3290. DOI: 10.1073/pnas.1303669110.
|
[42] |
Ben-DavidU, GanQF, Golan-LevT, et al. Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen[J]. Cell Stem Cell, 2013,12(2):167-179. DOI: 10.1016/j.stem.2012.11.015.
|
[43] |
DossMX, SachinidisA. Current challenges of iPSC-based disease modeling and therapeutic implications[J]. Cells, 2019,8(5):403. DOI: 10.3390/cells8050403.
|
[44] |
DeuseT, HuX, GravinaA, et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients[J]. Nat Biotechnol, 2019,37(3):252-258. DOI: 10.1038/s41587-019-0016-3.
|
[45] |
AzumaK, YamanakaS. Recent policies that support clinical application of induced pluripotent stem cell-based regenerative therapies[J]. Regenerative Therapy, 2016, 4:36-47. DOI: 10.1016/j.reth.2016.01.009.
|
[46] |
MahmoodN, SuhTC, AliKM, et al. Induced pluripotent stem cell-derived corneal cells: current status and application[J/OL]. Stem Cell Rev Rep, 2022,(2022-08-01)[2022-08-31]. https://pubmed.ncbi.nlm.nih.gov/35913555/. DOI: 10.1007/s12015-022-10435-8. [published online ahead of print].
|