[1] |
吴军,唐丹,李曾慧萍.烧伤康复治疗学[M].北京:人民卫生出版社,2015:324-329.
|
[2] |
陆树良.把握创面修复的规律和特征促进创面愈合[J].中华烧伤杂志,2021,37(5):401-403.DOI: 10.3760/cma.j.cn501120-20210322-00100.
|
[3] |
中国整形美容协会瘢痕医学分会.瘢痕早期治疗全国专家共识(2020版)[J].中华烧伤杂志,2021,37(2):113-125.DOI: 10.3760/cma.j.cn501120-20200609-00300.
|
[4] |
BermanB,MaderalA,RaphaelB.Keloids and hypertrophic scars: pathophysiology, classification, and treatment[J].Dermatol Surg,2017,43 Suppl 1:S3-18.DOI: 10.1097/DSS.0000000000000819.
|
[5] |
SongM,LiuY,LiuP,et al.A promising tool for surgical lipotransfer: a constant pressure and quantity injection device in facial fat grafting[J/OL].Burns Trauma,2017,5:17 [2021-07-05]. https://pubmed.ncbi.nlm.nih.gov/28573148/. DOI: 10.1186/s41038-017-0077-9.
|
[6] |
宋玫,刘毅,汪诤,等.恒压恒量微创颗粒脂肪注射移植装置的研制[J].中国美容整形外科杂志,2014,25(7):405-407.DOI: 10.3969/j.issn.1673-7040.2014.07.008.
|
[7] |
YunIS,JeonYR,LeeWJ,et al.Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: a pilot study[J].Dermatol Surg,2012,38(10):1678-1688.DOI: 10.1111/j.1524-4725.2012.02495.x.
|
[8] |
StrongAL, GimbleJM, BunnellBA. Analysis of the pro- and anti-inflammatory cytokines secreted by adult stem cells during differentiation[J].Stem Cells Int,2015,2015:412467. DOI: 10.1155/2015/412467.
|
[9] |
LiY,ZhangW,GaoJ,et al.Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway[J].Stem Cell Res Ther,2016,7(1):102.DOI: 10.1186/s13287-016-0356-6.
|
[10] |
ZhangQ,LiuLN,YongQ,et al.Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model[J].Stem Cell Res Ther,2015,6:145.DOI: 10.1186/s13287-015-0133-y.
|
[11] |
LancerottoL,ChinMS,FreniereB,et al.Mechanisms of action of external volume expansion devices[J].Plast Reconstr Surg,2013,132(3):569-578.DOI: 10.1097/PRS.0b013e31829ace30.
|
[12] |
BrunoA,Delli SantiG,FascianiL,et al.Burn scar lipofilling: immunohistochemical and clinical outcomes[J].J Craniofac Surg,2013,24(5):1806-1814.DOI: 10.1097/SCS.0b013e3182a148b9.
|
[13] |
RiyatH,TouilLL,BriggsM,et al.Autologous fat grafting for scars, healing and pain: a review[J].Scars Burn Heal,2017,3:2059513117728200.DOI: 10.1177/2059513117728200.
|
[14] |
JaspersM,BrouwerKM,van TrierA,et al.Sustainable effectiveness of single-treatment autologous fat grafting in adherent scars[J].Wound Repair Regen,2017,25(2):316-319.DOI: 10.1111/wrr.12521.
|
[15] |
UlrichD,UlrichF,van DoornL,et al.Lipofilling of perineal and vaginal scars: a new method for improvement of pain after episiotomy and perineal laceration[J].Plast Reconstr Surg,2012,129(3):593e-594e.DOI: 10.1097/PRS.0b013e3182419c2c.
|
[16] |
LiSH,WuYD,WuYY,et al.Autologous fat transplantation for the treatment of abdominal wall scar adhesions after cesarean section[J].J Plast Surg Hand Surg,2021,55(4):210-215.DOI: 10.1080/2000656X.2020.1856675.
|
[17] |
XuX,LaiL,ZhangX,et al.Autologous chyle fat grafting for the treatment of hypertrophic scars and scar-related conditions[J].Stem Cell Res Ther,2018,9(1):64.DOI: 10.1186/s13287-018-0782-8.
|
[18] |
PatelN.Fat injection in severe burn outcomes: a new perspective of scar remodeling and reduction[J].Aesthetic Plast Surg,2008,32(3):470-472.DOI: 10.1007/s00266-008-9120-3.
|
[19] |
Kuka EpsteinG,EpsteinJ.Two-stage procedure to correct scalp and facial scars-autologous fat grafting before hair grafting[J].Dermatol Surg,2020,46(9):1262-1264.DOI: 10.1097/DSS.0000000000002107.
|
[20] |
JanSN, BashirMM, KhanFA,et al. Unfiltered nanofat injections rejuvenate postburn scars of face[J]. Ann Plast Surg,2019,82(1):28-33. DOI: 10.1097/SAP.0000000000001631.
|
[21] |
HuCH,TsengYW,LeeCW,et al.Combination of mesenchymal stem cell-conditioned medium and botulinum toxin type A for treating human hypertrophic scars[J].J Plast Reconstr Aesthet Surg,2020,73(3):516-527.DOI: 10.1016/j.bjps.2019.07.010.
|
[22] |
HouZ, FanF, LiuP. BTXA regulates the epithelial-mesenchymal transition and autophagy of keloid fibroblasts via modulating miR-1587/miR-2392 targeted ZEB2[J]. Biosci Rep,2019,39(10):BSR20190679. DOI: 10.1042/BSR20190679.
|
[23] |
ZhangX, LanD, NingS, et al. Botulinum toxin type A prevents the phenotypic transformation of fibroblasts induced by TGF-β1 via the PTEN/PI3K/Akt signaling pathway[J].Int J Mol Med,2019,44(2):661-671.DOI: 10.3892/ijmm.2019.4226.
|
[24] |
ByunHJ, ParkJH, LeeJH. Combination treatment of intra/perilesional botulinum toxin-a injection and ablative fractional laser for better clinical outcomes of hypertrophic fibrotic thyroidectomy scars following fractional ablative laser resurfacing[J].Ann Dermatol, 2021,33(2):170-177.DOI: 10.5021/ad.2021.33.2.170.
|
[25] |
SabryHH, IbrahimEA, HamedAM. Assessment of laser-assisted delivery vs intralesional injection of botulinum toxin A in treatment of hypertrophic scars and keloids[J]. Dermatol Ther,2020,33(6):e13980. DOI: 10.1111/dth.13980.
|
[26] |
AlsterTS, LiMKY. Microneedling of scars: a large prospective study with long-term follow-up[J]. Plast Reconstr Surg,2020,145(2):358-364. DOI: 10.1097/PRS.0000000000006462.
|
[27] |
ZhouN,LiD,LuoY,et al. Effects of botulinum toxin type A on microvessels in hypertrophic scar models on rabbit ears[J]. Biomed Res Int,2020,2020:2170750. DOI: 10.1155/2020/2170750.
|
[28] |
HuangSH, WuKW, LoJJ, et al. Synergic effect of botulinum toxin type-A and triamcinolone alleviates scar pruritus by modulating epidermal hyperinnervation: a preliminary report[J]. Aesthet Surg J,2021, 41(11):NP1721-NP1731. DOI: 10.1093/asj/sjab105.
|
[29] |
RahmanSHA, MohamedMS, HamedAM. Efficacy and safety of Nd:YAG laser alone compared with combined Nd:YAG laser with intralesional steroid or botulinum toxin A in the treatment of hypertrophic scars[J].Lasers Med Sci,2021,36(4):837-842.DOI: 10.1007/s10103-020-03120-0.
|
[30] |
CaponAC, GosséAR, IarmarcovaiGN, et al. Scar prevention by laser-assisted scar healing (LASH): a pilot study using an 810-nm diode-laser system[J]. Lasers Surg Med, 2008,40(7):443-445. DOI: 10.1002/lsm.20657.
|
[31] |
DuF, YuY, ZhouZ, et al. Early treatment using fractional CO2 laser before skin suture during scar revision surgery in Asians[J]. J Cosmet Laser Ther,2018,20(2):102-105. DOI: 10.1080/14764172.2017.1358452.
|
[32] |
CohenJL, GeronemusR. Safety and efficacy evaluation of pulsed dye laser treatment, CO2 ablative fractional resurfacing, and combined treatment for surgical scar clearance[J].J Drugs Dermatol,2016,15(11):1315-1319.
|
[33] |
刘毅,姜疆.正确把握皮秒激光治疗适应证[J].中国美容整形外科杂志,2020,31(10):577-580.DOI: 10.3969/j.issn.1673-7040.2020.10.002.
|
[34] |
ChangM, MaX, OuyangT,et al.Potential molecular mechanisms involved in 5-aminolevulinic acid-based photodynamic therapy against human hypertrophic scars[J]. Plast Reconstr Surg,2015,136(4):715-727. DOI: 10.1097/PRS.0000000000001626.
|
[35] |
KarrerS, BosserhoffAK, WeidererP, et al. Keratinocyte-derived cytokines after photodynamic therapy and their paracrine induction of matrix metalloproteinases in fibroblasts[J].Br J Dermatol, 2015, 151(4):776-783.DOI: 10.1111/j.1365-2133.2004.06209.x.
|
[36] |
MariW,AlsabriSG, TabalN, et al. Novel insights on understanding of keloid scar: article review[J].J Am Coll Clin Wound Spec, 2016,7(1/2/3):1-7. DOI: 10.1016/j.jccw.2016.10.001.
|
[37] |
PolatM, KayaH, ᶊahinA. A new approach in the treatment of keloids: UVA-1 laser[J].Photomed Laser Surg,2016,34(3):130-133. DOI: 10.1089/pho.2015.4046.
|
[38] |
HaimovicA, BrauerJA, Cindy BaeYS, et al. Safety of a picosecond laser with diffractive lens array (DLA) in the treatment of Fitzpatrick skin types IV to VI: a retrospective review[J]. J Am Acad Dermatol,2016, 74(5):931-936.DOI: 10.1016/j.jaad.2015.12.010.
|
[39] |
LeeJW, KimBJ, KimMN, et al. The efficacy of autologous platelet rich plasma combined with ablative carbon dioxide fractional resurfacing for acne scars: a simultaneous split-face trial[J].Dermatol Surg,2011,37(7):931-938. DOI: 10.1111/j.1524-4725.2011.01999.x.
|
[40] |
FosterKW,MoyRL,FincherEF. Advances in plasma skin regeneration[J]. J Cosmet Dermatol, 2008,7(3):169-179. DOI: 10.1111/j.1473-2165.2008.00385.x.
|
[41] |
励建安. 人机共融,天人合一——关于康复机器人应用与发展的思考[J]. 中国康复医学杂志,2020,35(8):897-899. DOI: 10.3969/j.issn.1001-1242.2020.08.001.
|
[42] |
KsA, SkB, TvjtA, et al. Enhanced Kapandji test evaluation of a soft robotic thumb rehabilitation device by developing a fiber-reinforced elastomer-actuator based 5-digit assist system[J]. Robotics and Autonomous Systems, 2019, 111(1):20-30. DOI: 10.1016/j.robot.2018.09.007.
|
[43] |
DasS, KishishitaY, TsujiT, et al. ForceHand glove: a wearable force-feedback glove with pneumatic artificial muscles (PAMs)[J]. IEEE Robotics & Automation Letters, 2018,3(3):2416-2423.DOI: 10.1109/LRA.2018.2813403.
|
[44] |
LiuQ, ZuoJ, ZhuC, et al. Design and control of soft rehabilitation robots actuated by pneumatic muscles: state of the art[J]. Future Generation Computer Systems, 2020, 113(6):236-240. DOI: 10.1016/j.future.2020.06.046.
|
[45] |
WashabaughEP, TreadwayE, GillespieRB, et al. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study[J].Restor Neurol Neurosci, 2018,36(6):693-708.DOI: 10.3233/RNN-180830.
|
[46] |
SamhanAF, AbdelhalimNM, ElnaggarRK. Effects of interactive robot-enhanced hand rehabilitation in treatment of paediatric hand-burns: a randomized, controlled trial with 3-months follow-up[J]. Burns, 2020, 46(6):1347-1355.DOI: 10.1016/j.burns.2020.01.015.
|