[1] |
WangSQ, ZhengH, ZhouL, et al.Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria[J]. Nano Lett,2020,20(7):5149-5158.DOI: 10.1021/acs.nanolett.0c01371.
|
[2] |
XuXY, RayR, GuYL, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc,2004,126(40):12736-12737. DOI: 10.1021/ja040082h.
|
[3] |
CuiL, RenX, SunMT, et al. Carbon dots: synthesis, properties and applications[J]. Nanomaterials (Basel),2021,11(12):3419.DOI: 10.3390/nano11123419.
|
[4] |
ChahalS,MacairanJR,YousefiN,et al.Green synthesis of carbon dots and their applications[J].RSC Adv,2021,11(41):25354- 25363.DOI: 10.1039/d1ra04718c.
|
[5] |
MeiL, GaoXR, ShiYM, et al. Augmented graphene quantum dot-light irradiation therapy for bacteria-infected wounds[J]. ACS Appl Mater Interfaces,2020,12(36):40153-40162.DOI: 10.1021/acsami.0c13237.
|
[6] |
NieXL, JiangCY, WuSL, et al. Carbon quantum dots: a bright future as photosensitizers for in vitro antibacterial photodynamic inactivation[J/OL]. J Photochem Photobiol B,2020,206:111864(2020-03-23)[2021-07-09].https://pubmed.ncbi.nlm.nih.gov/32247250/.DOI:10.1016/j.jphotobiol.2020.111864.[published online ahead of print].
|
[7] |
SunHJ, GaoN, DongK, et al.Graphene quantum dots-band-aids used for wound disinfection[J]. ACS Nano,2014,8(6):6202-6210.DOI: 10.1021/nn501640q.
|
[8] |
LiangMJ, WangYB, MaK, et al. Engineering inorganic nanoflares with elaborate enzymatic specificity and efficiency for versatile biofilm eradication[J]. Small,2020,16(41):e2002348.DOI: 10.1002/smll.202002348.
|
[9] |
LiYJ, HarrounSG, SuYC, et al. Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug- hesistant bacteria[J]. Adv Healthc Mater,2016,5(19):2545-2554.DOI: 10.1002/adhm.201600297.
|
[10] |
JianHJ, WuRS, LinTY, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis[J]. ACS Nano,2017,11(7):6703-6716.DOI: 10.1021/acsnano.7b01023.
|
[11] |
WangHJ, SongZY, GuJJ, et al. Nitrogen-doped carbon quantum dots for preventing biofilm formation and eradicating drug-resistant bacteria infection[J]. ACS Biomater Sci Eng,2019, 5(9):4739-4749. DOI: 10.1021/acsbiomaterials.9b00583.
|
[12] |
XinQ, LiuQ, GengLL, et al. Chiral nanoparticle as a new efficient antimicrobial nanoagent[J]. Adv Healthc Mater,2017,6(4): 1601011.DOI: 10.1002/adhm.201601011.
|
[13] |
ZhaoCF, WangXW, YuLY, et al. Quaternized carbon quantum dots with broad-spectrum antibacterial activity for the treatment of wounds infected with mixed bacteria[J]. Acta Biomater,2022,138:528-544.DOI: 10.1016/j.actbio.2021.11.010.
|
[14] |
DasB, DadhichP, PalP, et al. Carbon nanodots from date molasses: new nanolights for the in vitro scavenging of reactive oxygen species[J]. J Mater Chem B,2014,2(39):6839-6847.DOI: 10.1039/c4tb01020e.
|
[15] |
BankotiK, RameshbabuAP, DattaS, et al. Onion derived carbon nanodots for live cell imaging and accelerated skin wound healing[J]. J Mater Chem B,2017,5(32):6579-6592.DOI: 10.1039/c7tb00869d.
|
[16] |
YangD, LiL, CaoL, et al. Green synthesis of lutein-based carbon dots applied for free-radical scavenging within cells[J]. Materials(Basel),2020,13(18):4146.DOI: 10.3390/ma13184146.
|
[17] |
ZhaoSJ, LanMH, ZhuXY, et al. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical ccavenging[J]. ACS Appl Mater Interfaces,2015,7(31):17054-17060.DOI: 10.1021/acsami.5b03228.
|
[18] |
JiaJ, LinB, GaoYF, et al. Highly luminescent N-doped carbon dots from black soya beans for free radical scavenging, Fe3+ sensing and cellular imaging[J]. Spectrochim Acta A Mol Biomol Spectrosc,2019,211:363-372.DOI: 10.1016/j.saa.2018.12.034.
|
[19] |
DuFF, ShuangSM, GuoZH, et al. Rapid synthesis of multifunctional carbon nanodots as effective antioxidants, antibacterial agents, and quercetin nanoprobes[J]. Talanta,2020,206:120243.DOI: 10.1016/j.talanta.2019.120243.
|
[20] |
DasB, PalP, DadhichP, et al. In vivo cell tracking, reactive oxygen species scavenging, and antioxidative gene down regulation by tong-term exposure of biomass-derived carbon dots[J]. ACS Biomater Sci Eng,2019,5(1):346-356.DOI: 10.1021/acsbiomaterials.8b01101.
|
[21] |
GaoJ, LiuYF, JiangB, et al. Phenylenediamine-based carbon nanodots alleviate acute kidney injury via preferential renal accumulation and antioxidant capacity[J]. ACS Appl Mater Interfaces,2020,12(28):31745-31756.DOI: 10.1021/acsami.0c05041.
|
[22] |
HuangGJ, LinYQ, ZhangLX, et al. Synthesis of sulfur-selenium doped carbon quantum dots for biological imaging and scavenging reactive oxygen species[J]. Sci Rep,2019,9(1):19651.DOI: 10.1038/s41598-019-55996-w.
|
[23] |
LuoWQ, WangYM, LinF, et al. Selenium-doped carbon quantum dots efficiently ameliorate secondary spinal cord injury via scavenging reactive oxygen species[J]. Int J Nanomedicine,2020,15:10113-10125.DOI: 10.2147/IJN.S282985.
|
[24] |
ZhangMM, ZhaoLL, DuFT, et al. Facile synthesis of cerium-doped carbon quantum dots as a highly efficient antioxidant for free radical scavenging[J]. Nanotechnology,2019,30(32):325101.DOI: 10.1088/1361-6528/ab12ef.
|
[25] |
SchneiderLA, KorberA, GrabbeS, et al. Influence of pH on wound-healing: a new perspective for wound-therapy?[J]. Arch Dermatol Res,2007,298(9):413-420.DOI: 10.1007/s00403-006-0713-x.
|
[26] |
DargavilleTR, FarrugiaBL, BroadbentJA, et al. Sensors and imaging for wound healing: a review[J]. Biosens Bioelectron,2013,41:30-42.DOI: 10.1016/j.bios.2012.09.029.
|
[27] |
GongXJ, LuWJ, LiuY, et al. Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging[J]. J Mater Chem B,2015,3(33):6813-6819.DOI: 10.1039/c5tb00575b.
|
[28] |
YuanFL, DingL, LiYC, et al. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range[J]. Nanoscale,2015,7(27):11727-11733.DOI: 10.1039/c5nr02007g.
|
[29] |
WangL, LiM, LiWT, et al. Rationally designed efficient dual-mode colorimetric/fluorescence sensor based on carbon dots for detection of pH and Cu2+ ions[J]. ACS Sustainable Chem. Eng,2018,6(10):12668-12674.DOI: 10.1021/acssuschemeng.8b01625.
|
[30] |
YangP, ZhuZQ, ZhangT, et al. Orange-emissive carbon quantum dots: toward application in wound pH monitoring based on colorimetric and fluorescent changing[J]. Small,2019,15(44):e1902823.DOI: 10.1002/smll.201902823.
|
[31] |
ZhangQC, LiZQ, ZhangM, et al. Injectable in situ self-cross-linking hydrogels based on hemoglobin, carbon quantum dots, and sodium alginate for real-time detection of wound bacterial infection and efficient postoperative prevention of tumor recurrence[J]. Langmuir,2020,36(44):13263-13273.DOI: 10.1021/acs.langmuir.0c02219.
|