留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

衰老皮肤中ⅩⅦ型胶原蛋白α1对表皮干细胞的影响及微小RNA干预机制

孙佳辰 孙天骏 申传安 赵虹晴 刘馨竹 张熠杰

孙佳辰, 孙天骏, 申传安, 等. 衰老皮肤中ⅩⅦ型胶原蛋白α1对表皮干细胞的影响及微小RNA干预机制[J]. 中华烧伤与创面修复杂志, 2022, 38(9): 839-848. DOI: 10.3760/cma.j.cn501120-20210829-00293.
引用本文: 孙佳辰, 孙天骏, 申传安, 等. 衰老皮肤中ⅩⅦ型胶原蛋白α1对表皮干细胞的影响及微小RNA干预机制[J]. 中华烧伤与创面修复杂志, 2022, 38(9): 839-848. DOI: 10.3760/cma.j.cn501120-20210829-00293.
Sun JC,Sun TJ,Shen CA,et al.Effects of collagen type ⅩⅦ α1 on epidermal stem cells in aging skin and the microRNA intervention mechanism[J].Chin J Burns Wounds,2022,38(9):839-848.DOI: 10.3760/cma.j.cn501120-20210829-00293.
Citation: Sun JC,Sun TJ,Shen CA,et al.Effects of collagen type ⅩⅦ α1 on epidermal stem cells in aging skin and the microRNA intervention mechanism[J].Chin J Burns Wounds,2022,38(9):839-848.DOI: 10.3760/cma.j.cn501120-20210829-00293.

衰老皮肤中ⅩⅦ型胶原蛋白α1对表皮干细胞的影响及微小RNA干预机制

doi: 10.3760/cma.j.cn501120-20210829-00293
基金项目: 

军队后勤科研项目保健专项 21BJZ29

军队后勤科研重大项目 ALB18J001

“十三五”军队重点学科专业建设项目 A350109

北京市海淀区卫生健康发展科研培育计划 HP2021-04-80502

详细信息
    通讯作者:

    申传安,Email:shenchuanan@126.com

Effects of collagen type ⅩⅦ α1 on epidermal stem cells in aging skin and the microRNA intervention mechanism

Funds: 

Health Special Project of Military Logistics Scientific Research Project 21BJZ29

Major Program of Military Logistics Research Plan ALB18J001

"13th Five-year Plan" Military Key Discipline Professional Construction Project A350109

Scientific Research and Cultivation Program for Health Development in Haidian District of Beijing HP2021-04-80502

More Information
  • 摘要:   目的  探讨ⅩⅦ型胶原蛋白α1(COL17α1)在小鼠衰老皮肤中的表达与作用及其对人表皮干细胞(ESC)干性和增殖能力的影响,并且探讨相关微小RNA(miR)干预人ESC中COL17α1表达的机制。  方法  采用实验研究方法。取2个月龄(青年)和24个月龄(老年)雄性C57BL/6J小鼠各12只,取其胸背部全层皮肤标本进行后续检测。对青年小鼠和老年小鼠全层皮肤标本,行苏木精-伊红染色后观察表皮层结构并测量表皮厚度,用透射电子显微镜观察表皮基底膜形态和半桥粒并行半桥粒计数,分别采用实时荧光定量反转录PCR(RT-PCR)法与蛋白质印迹法检测COL17α1的mRNA与蛋白表达,采用免疫荧光法观测COL17α1的蛋白表达与分布。取于解放军总医院第四医学中心行包皮切除手术的3名20~30岁健康男性术后弃用的新鲜包皮组织,提取ESC,取生长良好的细胞进行后续实验。按随机数字表法(分组方法下同)将ESC分为进行相应处理的空白对照组、转染试剂对照组、空载体质粒组、敲低COL17α1质粒组,培养48 h后,采用实时荧光定量RT-PCR法检测COL17α1的mRNA表达,采用蛋白质印迹法检测COL17α1和细胞角蛋白14(CK14)的蛋白表达,采用细胞计数试剂盒8法检测细胞增殖水平。通过DIANA、miRTarBase、miRNAMap、TargetScan、microRNA数据库筛选可能作用于COL17α1 mRNA 3'非编码区的miR。将ESC分为转染miR模拟物阴性对照物的阴性对照组和转染前述筛选出的各miR的模拟物的各miR模拟物组,转染后48 h,通过蛋白质印迹法检测COL17α1的蛋白表达。基于基因表达综合数据库(GEO)的miR测序数据集GSE114006,使用GEO2R工具统计分析前述筛选出的可造成COL17α1蛋白表达下降的miR在30名青年(18~25岁)人和30名老年(>70岁)人皮肤中的表达。取青年小鼠和老年小鼠全层皮肤标本,采用实时荧光定量RT-PCR法检测前述老年人皮肤中表达增多的miR的表达。取2批ESC,第1批分为COL17α1野生型+miR-203b-3p阴性对照组与COL17α1野生型+miR-203b-3p模拟物组,第2批分为COL17α1突变型+miR-203b-3p阴性对照组与COL17α1突变型+miR-203b-3p模拟物组,分别转染对应序列,48 h后,采用荧光素酶报告基因检测试剂盒检测COL17α1的基因表达水平。组织实验中样本数均为6,细胞实验中样本数均为3。对数据行独立样本t检验、单因素方差分析、LSD检验或Dunnett检验、Mann-Whitney U检验或Kruskal-Wallis H检验。  结果  与青年小鼠比较,老年小鼠皮肤表皮层与真皮层分界模糊且细胞层次较少,表皮层厚度明显变薄(Z=-2.88,P<0.01),基底膜形态不连续,表皮-真皮连接处半桥粒较少且分布不均,半桥粒数量明显减少(Z=-2.91,P<0.01),COL17α1的mRNA和蛋白表达水平均明显降低(t值分别为10.61、6.85,P<0.01)。与青年小鼠比较,老年小鼠皮肤表皮基底层和毛囊球部的COL17α1蛋白表达均明显减少(Z=-2.24,P<0.05)。培养48 h后,空白对照组、转染试剂对照组、空载体质粒组、敲低COL17α1质粒组ESC中COL17α1的蛋白表达水平分别为1.00±0.27、1.12±0.21、1.13±0.23、0.42±0.18。相较于空白对照组,转染试剂对照组和空载体质粒组ESC中COL17α1的mRNA和蛋白表达水平、CK14的蛋白表达水平及ESC增殖水平均未发生明显变化(P>0.05),敲低COL17α1质粒组ESC中这些指标均明显降低(P<0.05或P<0.01)。miR-203a-3p、miR-203b-3p、miR-512-5p、miR-124-3p、miR-28-5p、miR-590-3p、miR-329-5p可能结合COL17α1 mRNA的3'非编码区。转染48 h后,与阴性对照组的1.000±0.224比较,miR-329-5p模拟物组、miR-203b-3p模拟物组和miR-203a-3p模拟物组ESC中COL17α1的蛋白表达水平明显降低(0.516±0.188、0.170±0.025、0.235±0.025,t值分别为3.17、5.43、5.07,P<0.05或P<0.01)。老年人皮肤中仅miR-203b-3p表达水平明显高于青年人(t=3.27,P<0.01)。老年小鼠皮肤中miR-203b-3p表达水平明显高于青年小鼠(Z=-2.88,P<0.01)。转染后48 h,COL17α1野生型+miR-203b-3p模拟物组ESC中COL17α1的基因表达水平明显低于COL17α1野生型+miR-203b-3p阴性对照组(t=7.66,P<0.01),COL17α1突变型+miR-203b-3p模拟物组ESC中COL17α1的基因表达水平与COL17α1突变型+miR-203b-3p阴性对照组相近(P>0.05)。  结论  COL17α1的mRNA和蛋白表达水平随小鼠年龄增长而减少,可能导致小鼠ESC脱离表皮基底膜。COL17α1的表达减少可抑制CK14的表达与ESC增殖,这可能是老年人皮肤中表皮层变薄和创面愈合减慢的原因。小鼠衰老皮肤中表达增多的miR-203b-3p可以靶向结合COL17α1 mRNA的3'非编码区,阻碍转录后翻译过程,造成COL17α1蛋白表达减少。

     

  • 参考文献(30)

    [1] WeiX,LiM,ZhengZ,et al.Senescence in chronic wounds and potential targeted therapies[J/OL].Burns Trauma,2022,10:tkab045[2022-08-10].https://pubmed.ncbi.nlm.nih.gov/35187179/.DOI: 10.1093/burnst/tkab045.
    [2] GoeiH,van BaarME,DokterJ,et al.Burns in the elderly: a nationwide study on management and clinical outcomes[J/OL].Burns Trauma,2020,8:tkaa027[2022-08-10].https://pubmed.ncbi.nlm.nih.gov/33123606/.DOI: 10.1093/burnst/tkaa027.
    [3] MahmoudiS,ManciniE,XuL,et al.Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing[J].Nature,2019,574(7779):553-558.DOI: 10.1038/s41586-019-1658-5.
    [4] FuX.Wound healing center establishment and new technology application in improving the wound healing quality in China[J/OL].Burns Trauma,2020,8:tkaa038[2021-08-29]. https://pubmed.ncbi.nlm.nih.gov/33134399/. DOI: 10.1093/burnst/tkaa038.
    [5] XieJ,YaoB,HanY,et al.Skin appendage-derived stem cells: cell biology and potential for wound repair[J/OL].Burns Trauma,2016,4:38[2022-08-10].https://pubmed.ncbi.nlm.nih.gov/27800498/.DOI: 10.1186/s41038-016-0064-6.
    [6] NegriVA,WattFM.Understanding human epidermal stem cells at single-cell resolution[J].J Invest Dermatol,2022,142(8):2061-2067.DOI: 10.1016/j.jid.2022.04.003.
    [7] HsuYC,FuchsE.Building and maintaining the skin[J].Cold Spring Harb Perspect Biol,2022,14(7):a040840.DOI: 10.1101/cshperspect.a040840.
    [8] HarnHI,ChenCC,WangSP,et al.Tissue mechanics in haired murine skin: potential implications for skin aging[J].Front Cell Dev Biol,2021,9:635340.DOI: 10.3389/fcell.2021.635340.
    [9] NatsugaK,WatanabeM,NishieW,et al.Life before and beyond blistering: the role of collagen XVII in epidermal physiology[J].Exp Dermatol,2019,28(10):1135-1141.DOI: 10.1111/exd.13550.
    [10] TanimuraS,TadokoroY,InomataK,et al.Hair follicle stem cells provide a functional niche for melanocyte stem cells[J].Cell Stem Cell,2011,8(2):177-187.DOI: 10.1016/j.stem.2010.11.029.
    [11] Umegaki-AraoN,PasmooijAM,ItohM,et al.Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa[J].Sci Transl Med,2014,6(264):264ra164.DOI: 10.1126/scitranslmed.3009342.
    [12] HérisséAL,CharlesworthA,BellonN,et al.Genotypic and phenotypic analysis of 34 cases of inherited junctional epidermolysis bullosa caused by COL17A1 mutations[J].Br J Dermatol,2021,184(5):960-962.DOI: 10.1111/bjd.19752.
    [13] MatsumuraH,MohriY,BinhNT,et al.Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis[J].Science,2016,351(6273):aad4395.DOI: 10.1126/science.aad4395.
    [14] WangX,ShenC,LiZ,et al.Efficient isolation and high yield of epidermal cells from foreskin biopsies by dynamic trypsinization[J].Burns,2018,44(5):1240-1250.DOI: 10.1016/j.burns.2018.01.013.
    [15] LiB,TangH,BianX,et al.Calcium silicate accelerates cutaneous wound healing with enhanced re-epithelialization through EGF/EGFR/ERK-mediated promotion of epidermal stem cell functions[J/OL].Burns Trauma,2021,9:tkab029[2022-08-10].https://pubmed.ncbi.nlm.nih.gov/34604395/.DOI: 10.1093/burnst/tkab029.
    [16] LeeH,HongY,KimM.Structural and functional changes and possible molecular mechanisms in aged skin[J].Int J Mol Sci,2021,22(22):12489.DOI: 10.3390/ijms222212489.
    [17] SedovE,KorenE,ChopraS,et al.THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair[J].Nat Cell Biol,2022,24(7):1049-1063.DOI: 10.1038/s41556-022-00944-6.
    [18] KulukianA,FuchsE.Spindle orientation and epidermal morphogenesis[J].Philos Trans R Soc Lond B Biol Sci,2013,368(1629):20130016.DOI: 10.1098/rstb.2013.0016.
    [19] ChoiK,ParkSH,ParkSY,et al.The stem cell quiescence and niche signaling is disturbed in the hair follicle of the hairpoor mouse, an MUHH model mouse[J].Stem Cell Res Ther,2022,13(1):211.DOI: 10.1186/s13287-022-02898-w.
    [20] PersaOD,KoesterJ,NiessenCM.Regulation of cell polarity and tissue architecture in epidermal aging and cancer[J].J Invest Dermatol,2021,141(4S):S1017-1023.DOI: 10.1016/j.jid.2020.12.012.
    [21] LangtonAK,HalaiP,GriffithsCE,et al.The impact of intrinsic ageing on the protein composition of the dermal-epidermal junction[J].Mech Ageing Dev,2016,156:14-16.DOI: 10.1016/j.mad.2016.03.006.
    [22] 朱冬振,姚斌,崔晓丽,等.年龄对人增生性瘢痕硬度和成纤维细胞纤维化表型的影响及其机制[J].中华烧伤杂志,2021,37(10):937-945.DOI: 10.3760/cma.j.cn501120-20200810-00374.
    [23] WangY,KitahataH,KosumiH,et al.Collagen XVII deficiency alters epidermal patterning[J].Lab Invest,2022,102(6):581-588.DOI: 10.1038/s41374-022-00738-2.
    [24] KwonOS,YooHG,HanJH,et al.Photoaging-associated changes in epidermal proliferative cell fractions in vivo[J].Arch Dermatol Res,2008,300(1):47-52.DOI: 10.1007/s00403-007-0812-3.
    [25] XiangY,LiuY,YangY,et al.Reduced expression of collagen 17A1 in naturally aged, photoaged, and UV-irradiated human skin in vivo: potential links to epidermal aging[J/OL].J Cell Commun Signal,2022,16(3):421-432.DOI: 10.1007/s12079-021-00654-y.
    [26] 廖银友,张丕红.竞争性内源性RNA在创面愈合中作用的研究进展[J].中华烧伤与创面修复杂志,2022,38(1):84-89.DOI: 10.3760/cma.j.cn501120-20201125-00498.
    [27] AakkoS,StraumeAH,BirkelandEE,et al.MYC-induced miR-203b-3p and miR-203a-3p control Bcl-xL expression and paclitaxel sensitivity in tumor cells[J].Transl Oncol,2019,12(1):170-179.DOI: 10.1016/j.tranon.2018.10.001.
    [28] LabarradeF,BottoJM,ImbertIM.miR-203 represses keratinocyte stemness by targeting survivin[J/OL].J Cosmet Dermatol,2022(2022-06-08)[2022-08-10].https://pubmed.ncbi.nlm.nih.gov/35673958/.DOI:10.1111/jocd.15147.[published online ahead of print].
    [29] 孙礼祥,吴帅,张小薇,等.基于单细胞RNA测序探讨小鼠全层皮肤缺损创面中真皮成纤维细胞的生长因子调控网络[J].中华烧伤与创面修复杂志,2022,38(7):629-639.DOI: 10.3760/cma.j.cn501225-20220215-00029.
    [30] WangZ,ShiC.Cellular senescence is a promising target for chronic wounds: a comprehensive review[J/OL].Burns Trauma,2020,8:tkaa021[2022-08-10].https://pubmed.ncbi.nlm.nih.gov/32607375/.DOI: 10.1093/burnst/tkaa021.
  • 1  青年小鼠与老年小鼠全层皮肤中表皮层结构和厚度观察 苏木精-伊红×200。1A.青年小鼠表皮层厚度较厚,表皮层与真皮层分界明显并且细胞层次较多;1B.老年小鼠表皮层较图1A薄,表皮层与真皮层间分界模糊且细胞层次较图1A少

    2  青年小鼠与老年小鼠全层皮肤中基底膜和半桥粒情况。2A、2B.分别为青年小鼠、老年小鼠,图2A中皮肤基底膜形态完整(黑框处),图2B中皮肤基底膜形态断续(黑框处) 透射电子显微镜×1 500;2C、2D.分别为图2A、2B方框处放大图,图2C中含大量半桥粒结构且均匀分布在表皮-真皮连接处,图2D中半桥粒较少且分布不均 透射电子显微镜×3 750

    注:箭头指示半桥粒

    3  采用蛋白质印迹法检测的青年小鼠与老年小鼠全层皮肤中ⅩⅦ型胶原蛋白α1蛋白表达

    注:条带上方1、2分别指示青年小鼠和老年小鼠

    4  青年小鼠与老年小鼠全层皮肤中COL17α1蛋白的表达与分布 Alexa Fluor 488-4',6-二脒基-2-苯基吲哚×200。4A、4B、4C.分别为青年小鼠细胞核染色、COL17α1染色、细胞核与COL17α1染色重叠图片,细胞核完整,COL17α1蛋白表达较多,主要分布在表皮基底层和毛囊球部;4D、4E、4F.分别为老年小鼠细胞核染色、COL17α1染色、细胞核与COL17α1染色重叠图片,细胞核完整,COL17α1蛋白表达较图4B少

    注:细胞核阳性染色为蓝色,ⅩⅦ型胶原蛋白α1(COL17α1)阳性染色为绿色

    5  采用蛋白质印迹法检测的4组人表皮干细胞培养48 h后CK14和COL17α1的蛋白表达

    注:CK14为细胞角蛋白14,COL17α1为ⅩⅦ型胶原蛋白α1,GAPDH为3-磷酸甘油醛脱氢酶;条带上方1、2、3、4分别指示空白对照组、转染试剂对照组、空载体质粒组、敲低COL17α1质粒组

    6  采用蛋白质印迹法检测的8组人表皮干细胞中COL17α1的蛋白表达

    注:COL17α1为ⅩⅦ型胶原蛋白α1,GAPDH为3-磷酸甘油醛脱氢酶,miR为微小RNA;条带上方1、2、3、4、5、6、7、8分别指示阴性对照组、miR-512-5p模拟物组、miR-124-3p模拟物组、miR-28-5p模拟物组、miR-203a-3p模拟物组、miR-590-3p模拟物组、miR-329-5p模拟物组、miR-203b-3p模拟物组

    表1  4组人表皮干细胞培养48 h后COL17α1和CK14的相对表达量比较(x¯±s

    组别样本数COL17α1 mRNACOL17α1蛋白CK14蛋白
    空白对照组31.00±0.111.00±0.271.00±0.19
    转染试剂对照组31.09±0.121.12±0.211.20±0.27
    空载体质粒组30.97±0.091.13±0.231.17±0.21
    敲低COL17α1质粒组30.55±0.08a0.42±0.18b0.39±0.12a
    注:COL17α1为ⅩⅦ型胶原蛋白α1,CK14为细胞角蛋白14;与空白对照组比较,aP<0.01,bP<0.05
    下载: 导出CSV
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  471
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-29

目录

    /

    返回文章
    返回