留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

软组织三维生物打印与其配套装备研发的进展

胡妍珂 陈姝颖 周飞 熊雅慧 陈蕾 祁少海

胡妍珂, 陈姝颖, 周飞, 等. 软组织三维生物打印与其配套装备研发的进展[J]. 中华烧伤与创面修复杂志, 2022, 38(11): 1090-1095. DOI: 10.3760/cma.j.cn501120-20210922-00327.
引用本文: 胡妍珂, 陈姝颖, 周飞, 等. 软组织三维生物打印与其配套装备研发的进展[J]. 中华烧伤与创面修复杂志, 2022, 38(11): 1090-1095. DOI: 10.3760/cma.j.cn501120-20210922-00327.
Hu YK,Chen SY,Zhou F,et al.Progress in research and development of soft tissue three-dimensional bioprinting and its supporting equipment[J].Chin J Burns Wounds,2022,38(11):1090-1095.DOI: 10.3760/cma.j.cn501120-20210922-00327.
Citation: Hu YK,Chen SY,Zhou F,et al.Progress in research and development of soft tissue three-dimensional bioprinting and its supporting equipment[J].Chin J Burns Wounds,2022,38(11):1090-1095.DOI: 10.3760/cma.j.cn501120-20210922-00327.

软组织三维生物打印与其配套装备研发的进展

doi: 10.3760/cma.j.cn501120-20210922-00327
基金项目: 

国家自然科学基金面上项目 81971856

广东省自然科学基金 2020B1515020049

广州市科技计划 20170420165

详细信息
    通讯作者:

    祁少海,Email:qishh@mail.sysu.edu.cn

Progress in research and development of soft tissue three-dimensional bioprinting and its supporting equipment

Funds: 

General Program of National Natural Science Foundation of China 81971856

Natural Science Foundation of Guangdong Province of China 2020B1515020049

Science and Technology Program of Guangzhou 20170420165

More Information
  • 摘要: 三维生物打印作为组织工程的前沿技术,可以精确打印仿生组织,在骨骼、牙齿等硬组织打印领域取得了巨大的进展,软组织生物打印的研究也飞速发展。该文主要就软组织三维生物打印技术以及打印软件、打印硬件、配套耗材、生物反应器等配套装备的研发进展进行阐述,并对其未来研发方向进行展望。

     

  • [1] JanmohammadiM, NourbakhshMS. Recent advances on 3D printing in hard and soft tissue engineering[J]. Int J Polym Mater Po, 2020, 69(7): 449-466. DOI: 10.1080/00914037.2019.1581196.
    [2] LandersR, HübnerU, SchmelzeisenR, et al. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering[J]. Biomaterials, 2002, 23(23): 4437-4447. DOI: 10.1016/s0142-9612(02)00139-4.
    [3] HeinrichMA,LiuW,JimenezA,et al.3D bioprinting: from benches to translational applications[J].Small,2019,15(23):e1805510.DOI: 10.1002/smll.201805510.
    [4] ChoiYJ, JunYJ, KimDY, et al. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss[J]. Biomaterials, 2019, 206: 160-169. DOI: 10.1016/j.biomaterials.2019.03.036.
    [5] CuboN,GarciaM,Del CañizoJF,et al.3D bioprinting of functional human skin: production and in vivo analysis[J].Biofabrication,2016,9(1):015006.DOI: 10.1088/1758-5090/9/1/015006.
    [6] HsiehFY, LinHH, HsuSH. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair[J]. Biomaterials, 2015, 71: 48-57. DOI: 10.1016/j.biomaterials.2015.08.028.
    [7] KimY, KangK, JeongJ, et al. Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure[J]. Ann Surg Treat Res, 2017, 92(2): 67-72. DOI: 10.4174/astr.2017.92.2.67.
    [8] HomanKA, KoleskyDB, Skylar-ScottMA, et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips[J]. Sci Rep, 2016, 6: 34845. DOI: 10.1038/srep34845.
    [9] KlebeRJ.Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues[J].Exp Cell Res,1988,179(2):362-373.DOI: 10.1016/0014-4827(88)90275-3.
    [10] TanB,GanS,WangX,et al.Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives[J].J Mater Chem B,2021,9(27):5385-5413.DOI: 10.1039/d1tb00172h.
    [11] XuT,BaicuC,AhoM,et al.Fabrication and characterization of bio-engineered cardiac pseudo tissues[J].Biofabrication,2009,1(3):035001.DOI: 10.1088/1758-5082/1/3/035001.
    [12] KuzmenkoV, KarabulutE, PernevikE, et al. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines[J]. Carbohydr Polym, 2018, 189: 22-30. DOI: 10.1016/j.carbpol.2018.01.097.
    [13] HewesSA, WongAD, SearsonPC. Bioprinting microvessels using an inkjet printer[J]. Bioprinting, 2017, 7: 14-18. DOI: 10.1016/j.bprint.2017.05.002.
    [14] Faulkner-JonesA,FyfeC,CornelissenDJ,et al.Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D[J].Biofabrication,2015,7(4):044102.DOI: 10.1088/1758-5090/7/4/044102.
    [15] PeddeRD, MiraniB, NavaeiA, et al. Emerging biofabrication strategies for engineering complex tissue constructs[J]. Adv Mater, 2017, 29(19). DOI: 10.1002/adma.201606061.
    [16] VarkeyM, VisscherDO, van ZuijlenPPM, et al. Skin bioprinting: the future of burn wound reconstruction?[J/OL]. Burns Trauma, 2019, 7:4[2022-10-21]. https://pubmed.ncbi.nlm.nih.gov/30805375/.DOI: 10.1186/s41038-019-0142-7.
    [17] DuocastellaM, ColinaM, Fernández-PradasJM, et al. Study of the laser-induced forward transfer of liquids for laser bioprinting[J]. Appl Surf Sci, 2007, 253(19): 7855-7859. DOI: 10.1016/j.apsusc.2007.02.097.
    [18] VijayavenkataramanS, YanWC, LuWF, et al. 3D bioprinting of tissues and organs for regenerative medicine[J]. Adv Drug Del Rev, 2018, 132: 296-332. DOI: 10.1016/j.addr.2018.07.004.
    [19] KochL, DeiwickA, SchlieS, et al. Skin tissue generation by laser cell printing[J]. Biotechnol Bioeng, 2012, 109(7): 1855-1863. DOI: 10.1002/bit.24455.
    [20] GaebelR, MaN, LiuJ, et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration[J]. Biomaterials, 2011, 32(35): 9218-9230. DOI: 10.1016/j.biomaterials.2011.08.071.
    [21] ZhuW,HarrisBT,ZhangLG.Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting[J].Annu Int Conf IEEE Eng Med Biol Soc,2016,2016:4185-4188.DOI: 10.1109/EMBC.2016.7591649.
    [22] MaX, QuX, ZhuW, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting[J]. Proc Natl Acad Sci U S A, 2016, 113(8): 2206-2211. DOI: 10.1073/pnas.1524510113.
    [23] KimBS, GaoG, KimJY, et al. 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin[J]. Adv Healthc Mater, 2019, 8(7): e1801019. DOI: 10.1002/adhm.201801019.
    [24] YuJR,NavarroJ,CoburnJC,et al.Current and future perspectives on skin tissue engineering: key features of biomedical research, translational assessment, and clinical application[J].Adv Healthc Mater,2019,8(5):e1801471.DOI: 10.1002/adhm.201801471.
    [25] VijayavenkataramanS,LuWF,FuhJY.3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes[J].Biofabrication,2016,8(3):032001.DOI: 10.1088/1758-5090/8/3/032001.
    [26] WuY,FortunatoGM,OkesolaBO,et al.An interfacial self-assembling bioink for the manufacturing of capillary-like structures with tuneable and anisotropic permeability[J].Biofabrication,2021,13(3).DOI: 10.1088/1758-5090/abe4c3.
    [27] ItataniK, SekineT, YamagishiM, et al. Hemodynamic parameters for cardiovascular system in 4D flow MRI: mathematical definition and clinical applications[J]. Magn Reson Med Sci, 2022, 21(2): 380-399. DOI: 10.2463/mrms.rev.2021-0097.
    [28] 姚栋嘉, 陈智勇, 吕磊. 3D打印技术[M]. 北京: 机械工业出版社, 2018.
    [29] DattaP, BaruiA, WuY, et al. Essential steps in bioprinting: from pre- to post-bioprinting[J]. Biotechnol Adv, 2018, 36(5): 1481-1504. DOI: 10.1016/j.biotechadv.2018.06.003.
    [30] 曹桂平,张明娇,刘非,等. Arigin 3D Pro软件与Mimics软件三维重建模型的精度研究[J]. 中国组织工程研究, 2018,22(15):2384-2389. DOI: 10.3969/j.issn.2095-4344.0729.
    [31] SongJL, FuXY, RazaA, et al. Enhancement of mechanical strength of TCP-alginate based bioprinted constructs[J]. J Mech Behav Biomed Mater, 2020, 103: 103533. DOI: 10.1016/j.jmbbm.2019.103533.
    [32] AlbouyM, DesanlisA, BrossetS, et al. A preliminary study for an intraoperative 3D bioprinting treatment of severe burn injuries[J]. Plast Reconstr Surg Glob Open, 2022, 10(1): e4056. DOI: 10.1097/GOX.0000000000004056.
    [33] MaturavongsaditP,NarayananLK,ChansoriaP,et al. Cell-laden nanocellulose/chitosan-based bioinks for 3D bioprinting and enhanced osteogenic cell differentiation[J].ACS Appl Bio Mater,2021,4(3):2342-2353.DOI: 10.1021/acsabm.0c01108.
    [34] OzbolatIT, MoncalKK, GudapatiH. Evaluation of bioprinter technologies[J]. Additive Manufacturing, 2017, 13: 179-200. DOI: 10.1016/j.addma.2016.10.003.
    [35] ZhangY,Enhejirigala,YaoB,et al.Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles[J/OL].Burns Trauma,2021,9:tkab013[2022-10-21].https://pubmed.ncbi.nlm.nih.gov/34213515/.DOI: 10.1093/burnst/tkab013.
    [36] 刘小刚, 陈蕾, 李海航, 等. 天然与重组胶原蛋白在创面修复中的应用研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 978-982. DOI: 10.3760/cma.j.cn501120-20211123-00394.
    [37] SharmaD, RossD, WangGF, et al. Upgrading prevascularization in tissue engineering: a review of strategies for promoting highly organized microvascular network formation[J]. Acta Biomater, 2019, 95: 112-130. DOI: 10.1016/j.actbio.2019.03.016.
    [38] ZhangJ, WehrleE, RubertM, et al. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors[J].Int J Mol Sci,2021,22(8):3971.DOI: 10.3390/ijms22083971.
    [39] Paez-MayorgaJ, Hernández-VargasG, Ruiz-EsparzaGU, et al. Bioreactors for cardiac tissue engineering[J]. Adv Healthc Mater, 2019,8(7):e1701504.DOI: 10.1002/adhm.201701504.
    [40] MahfouziSH, AmoabedinyG, Safiabadi TaliSH. Advances in bioreactors for lung bioengineering: from scalable cell culture to tissue growth monitoring[J]. Biotechnol Bioeng, 2021,118(6):2142-2167. DOI: 10.1002/bit.27728.
    [41] PennarossaG,ArcuriS,De IorioT,et al.Current advances in 3D tissue and organ reconstruction[J].Int J Mol Sci,2021,22(2):830.DOI: 10.3390/ijms22020830.
    [42] RavichandranA,LiuY,TeohSH.Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation[J].J Tissue Eng Regen Med,2018,12(1):e7-e22.DOI: 10.1002/term.2270.
  • 加载中
计量
  • 文章访问数:  123
  • HTML全文浏览量:  46
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22

目录

    /

    返回文章
    返回