留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜绿假单胞菌噬菌体与宿主的相互作用研究进展

石茜 曾茁 张一鸣 杨子晨 彭毅志

石茜, 曾茁, 张一鸣, 等. 铜绿假单胞菌噬菌体与宿主的相互作用研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(9): 849-853. DOI: 10.3760/cma.j.cn501120-20210929-00338.
引用本文: 石茜, 曾茁, 张一鸣, 等. 铜绿假单胞菌噬菌体与宿主的相互作用研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(9): 849-853. DOI: 10.3760/cma.j.cn501120-20210929-00338.
Shi X, Zeng Z, Zhang YM,et al.Research advances on the interaction between Pseudomonas aeruginosa bacteriophages and the host[J].Chin J Burns Wounds,2022,38(9):849-853.DOI: 10.3760/cma.j.cn501120-20210929-00338.
Citation: Shi X, Zeng Z, Zhang YM,et al.Research advances on the interaction between Pseudomonas aeruginosa bacteriophages and the host[J].Chin J Burns Wounds,2022,38(9):849-853.DOI: 10.3760/cma.j.cn501120-20210929-00338.

铜绿假单胞菌噬菌体与宿主的相互作用研究进展

doi: 10.3760/cma.j.cn501120-20210929-00338
基金项目: 

国家自然科学基金面上项目 81772073

国家自然科学基金青年科学基金项目 82002051

创伤、烧伤与复合伤国家重点实验室开放课题基金 SKLKF201918

重庆市自然科学基金面上项目 cstc2021jcyj-msxmX0655

重庆市博士“直通车”项目 CSTB2022BSXM-JCX0019

详细信息
    通讯作者:

    彭毅志,Email:yizhipengtmmu@163.com

Research advances on the interaction between Pseudomonas aeruginosa bacteriophages and the host

Funds: 

General Program of National Natural Science Foundation of China 81772073

Youth Science Foundation Project of National Natural Science Foundation of China 82002051

Foundation of Open Projects from State Key Laboratory of Trauma, Burns and Combined Injury SKLKF201918

General Program of Natural Science Foundation of Chongqing cstc2021jcyj-msxmX0655

Chongqing Doctor "Through Train" Project CSTB2022BSXM-JCX0019

More Information
  • 摘要: 铜绿假单胞菌是最常见的烧伤感染创面病原菌,它能够编码多种毒力因子,具有很强的致病性,可导致预后差、病死率高。为了研究对抗铜绿假单胞菌感染的新方法,研究者们观察了其噬菌体与宿主之间广泛的相互作用。噬菌体通过多种机制影响甚至主导宿主细菌的结构、运动、代谢,促进宿主进化,也是影响宿主环境适应性和致病性的重要因素。该文分别从单细胞水平和群体水平对铜绿假单胞菌噬菌体与宿主的相互作用进行了综述。了解这些相互作用可为铜绿假单胞菌临床感染的治疗研究提供新的思路,为未来研发抗菌制剂以及指导烧伤感染治疗提供基础。

     

  • [1] GongYL, ChenJ, LiuCJ,et al.Comparison of pathogens and antibiotic resistance of burn patients in the burn ICU or in the common burn ward[J].Burns,2014,40(3):402-407.DOI: 10.1016/j.burns.2013.07.010.
    [2] YinSP,ChenP,YouB,et al.Molecular typing and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a Chinese burn center from 2011 to 2016[J].Front Microbiol,2018,9:1135.DOI: 10.3389/fmicb.2018.01135.
    [3] ThadenJT,ParkLP,MaskarinecSA,et al.Results from a 13-year prospective cohort study show increased mortality associated with bloodstream infections caused by Pseudomonas aeruginosa compared to other bacteria[J].Antimicrob Agents Chemother,2017,61(6):e02671-16.DOI: 10.1128/AAC.02671-16.
    [4] 杨子晨,袁志强,彭毅志.噬菌体免疫作用在脓毒症治疗中的应用研究进展[J].中华烧伤杂志,2019,35(8):630-633.DOI: 10.3760/cma.j.issn.1009-2587.2019.08.019.
    [5] 彭毅志,杨子晨.噬菌体在脓毒症治疗中的作用[J].中华烧伤杂志, 2020, 36(1): 5-8. DOI: 10.3760/cma.j.issn.1009-2587.2020.01.002.
    [6] 彭毅志,黄广涛.烧伤细菌感染的噬菌体治疗[J].中华烧伤杂志,2016,32(9):513-516.DOI: 10.3760/cma.j.issn.1009-2587.2016.09.001.
    [7] FeinerR,ArgovT,RabinovichL,et al.A new perspective on lysogeny: prophages as active regulatory switches of bacteria[J].Nat Rev Microbiol,2015,13(10):641-650.DOI: 10.1038/nrmicro3527.
    [8] CenensW,MakumiA,GoversSK,et al.Viral transmission dynamics at single-cell resolution reveal transiently immune subpopulations caused by a carrier state association[J].PLoS Genet,2015,11(12):e1005770.DOI: 10.1371/journal.pgen.1005770.
    [9] SamsonJE,MagadánAH,SabriM,et al.Revenge of the phages: defeating bacterial defences[J].Nat Rev Microbiol,2013,11(10):675-687.DOI: 10.1038/nrmicro3096.
    [10] LeS,HeXS,TanYL,et al.Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004[J].PLoS One,2013,8(7):e68562.DOI: 10.1371/journal.pone.0068562.
    [11] GlontiT,ChanishviliN,TaylorPW.Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa[J].J Appl Microbiol,2010,108(2):695-702.DOI: 10.1111/j.1365-2672.2009.04469.x.
    [12] ChungIY,JangHJ,BaeHW,et al.A phage protein that inhibits the bacterial ATPase required for type Ⅳ pilus assembly[J].Proc Natl Acad Sci U S A,2014,111(31):11503-11508.DOI: 10.1073/pnas.1403537111.
    [13] WeigeleP,RaleighEA.Biosynthesis and function of modified bases in bacteria and their viruses[J].Chem Rev,2016,116(20):12655-12687.DOI: 10.1021/acs.chemrev.6b00114.
    [14] GarneauJE,DupuisMÈ,VillionM,et al.The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J].Nature,2010,468(7320):67-71.DOI: 10.1038/nature09523.
    [15] PawlukA,StaalsRHJ,TaylorC,et al.Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species[J].Nat Microbiol,2016,1(8):16085.DOI: 10.1038/nmicrobiol.2016.85.
    [16] Bondy-DenomyJ,PawlukA,MaxwellKL,et al.Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system[J].Nature,2013,493(7432):429-432.DOI: 10.1038/nature11723.
    [17] CadyKC,Bondy-DenomyJ,HeusslerGE,et al.The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages[J].J Bacteriol,2012,194(21):5728-5738.DOI: 10.1128/JB.01184-12.
    [18] AliSS,XiaB,LiuJ,et al.Silencing of foreign DNA in bacteria[J].Curr Opin Microbiol,2012,15(2):175-181.DOI: 10.1016/j.mib.2011.12.014.
    [19] 杨洪江崔晓莉尤甲甲铜绿假单胞菌与噬菌体感染相关基因及应用中国CN 105400876 B2019-06-11

    杨洪江,崔晓莉,尤甲甲.铜绿假单胞菌与噬菌体感染相关基因及应用: 中国,CN 105400876 B[P]. 2019-06-11.

    [20] Van den BosscheA,CeyssensPJ,De SmetJ,et al.Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa[J].J Proteome Res,2014,13(10):4446-4456.DOI: 10.1021/pr500796n.
    [21] YakuninaM,ArtamonovaT,BorukhovS,et al.A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage[J].Nucleic Acids Res,2015,43(21):10411-10420.DOI: 10.1093/nar/gkv1095.
    [22] 杨子晨噬菌体在烧伤泛耐药细菌感染治疗中的机制研究重庆陆军军医大学2019

    杨子晨.噬菌体在烧伤泛耐药细菌感染治疗中的机制研究[D].重庆:陆军军医大学, 2019.

    [23] BreitbartM, ThompsonL, SuttleCA, et al. Exploring the vast diversity of marine viruses[J]. Oceanography, 2007, 20(2): 135-139. DOI: 10.5670/oceanog.2007.58.
    [24] De SmetJ,ZimmermannM,KogadeevaM,et al.High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection[J].ISME J,2016,10(8):1823-1835.DOI: 10.1038/ismej.2016.3.
    [25] YanoST,Rothman-DenesLB.A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader[J].Mol Microbiol,2011,79(5):1325-1338.DOI: 10.1111/j.1365-2958.2010.07526.x.
    [26] ErbML,KraemerJA,CokerJK,et al.A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells[J].Elife,2014,3:e03197.DOI: 10.7554/eLife.03197.
    [27] KoskellaB,BrockhurstMA.Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities[J].FEMS Microbiol Rev,2014,38(5):916-931.DOI: 10.1111/1574-6976.12072.
    [28] GómezP,BucklingA.Bacteria-phage antagonistic coevolution in soil[J].Science,2011,332(6025):106-109.DOI: 10.1126/science.1198767.
    [29] HallAR,ScanlanPD,MorganAD,et al.Host-parasite coevolutionary arms races give way to fluctuating selection[J].Ecol Lett,2011,14(7):635-642.DOI: 10.1111/j.1461-0248.2011.01624.x.
    [30] GorterFA,ScanlanPD,BucklingA.Adaptation to abiotic conditions drives local adaptation in bacteria and viruses coevolving in heterogeneous environments[J].Biol Lett,2016,12(2):20150879.DOI: 10.1098/rsbl.2015.0879.
    [31] MonsonR,FouldsI,FowerakerJ,et al.The Pseudomonas aeruginosa generalized transducing phage phiPA3 is a new member of the phiKZ-like group of 'jumbo' phages, and infects model laboratory strains and clinical isolates from cystic fibrosis patients[J].Microbiology (Reading),2011,157(Pt 3):859-867.DOI: 10.1099/mic.0.044701-0.
    [32] TaylorTB,BucklingA.Bacterial motility confers fitness advantage in the presence of phages[J].J Evol Biol,2013,26(10):2154-2160.DOI: 10.1111/jeb.12214.
    [33] ScanlanPD,BucklingA.Co-evolution with lytic phage selects for the mucoid phenotype of Pseudomonas fluorescens SBW25[J].ISME J,2012,6(6):1148-1158.DOI: 10.1038/ismej.2011.174.
    [34] FrimanVP,BucklingA.Effects of predation on real-time host-parasite coevolutionary dynamics[J].Ecol Lett,2013,16(1):39-46.DOI: 10.1111/ele.12010.
    [35] FrimanVP,BucklingA.Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities[J].ISME J,2014,8(9):1820-1830.DOI: 10.1038/ismej.2014.40.
    [36] Bondy-DenomyJ,QianJ,WestraER,et al.Prophages mediate defense against phage infection through diverse mechanisms[J].ISME J,2016,10(12):2854-2866.DOI: 10.1038/ismej.2016.79.
    [37] AbdallahK,HartmanK,PletzerD,et al.The bacteriophage-derived transcriptional regulator, LscR, activates the expression of levansucrase genes in Pseudomonas syringae[J].Mol Microbiol,2016,102(6):1062-1074.DOI: 10.1111/mmi.13536.
    [38] LeS,YaoXY,LuSG,et al.Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa[J].Sci Rep,2014,4:4738.DOI: 10.1038/srep04738.
    [39] TaylorVL,UdaskinML,IslamST,et al.The D3 bacteriophage α-polymerase inhibitor (Iap) peptide disrupts O-antigen biosynthesis through mimicry of the chain length regulator Wzz in Pseudomonas aeruginosa[J].J Bacteriol,2013,195(20):4735-4741.DOI: 10.1128/JB.00903-13.
    [40] YangZC,YinSP,LiG,et al.Global transcriptomic analysis of the interactions between phage φAbp1 and extensively drug-resistant Acinetobacter baumannii[J].mSystems,2019,4(2):e00068-19.DOI: 10.1128/mSystems.00068-19.
    [41] ChanBK, SistromM, WertzJE, et al.Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa[J].Scientific Reports,2016,6:26717. DOI: 10.1038/srep26717.
  • 加载中
计量
  • 文章访问数:  142
  • HTML全文浏览量:  146
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29

目录

    /

    返回文章
    返回