-
摘要: 微环境调控是促进创面修复和皮肤再生的关键技术。近年来,系列调控微环境和细胞行为的新型生物活性材料得以研发,显示出高效诱导创面修复和皮肤附件再生的能力。本文就相关新型生物活性材料的研究进展及其作用机制进行总结。Abstract: The modulation of microenvironment is a key technology towards promoting wound repair and skin regeneration. In recent years, a series of new bioactive materials that modulate the microenvironment and cell behaviors have been developed, demonstrating highly efficient capability of inducing wound repair and skin appendage regeneration. This article summarizes the research development of related new bioactive materials and their mechanisms of action.
-
Key words:
- Biocompatible materials /
- Wound healing /
- Skin /
- Regeneration /
- Microenvironment
-
参考文献
(40) [1] FinnertyCC,JeschkeMG,BranskiLK,et al.Hypertrophic scarring: the greatest unmet challenge after burn injury[J].Lancet,2016,388(10052):1427-1436.DOI: 10.1016/S0140-6736(16)31406-4. [2] SenCK.Human wound and its burden: updated 2020 compendium of estimates[J].Adv Wound Care (New Rochelle),2021,10(5):281-292.DOI: 10.1089/wound.2021.0026. [3] ClarkR.To scar or not to scar[J].N Engl J Med,2021,385(5):469-471.DOI: 10.1056/NEJMcibr2107204. [4] MooreAL,MarshallCD,BarnesLA,et al.Scarless wound healing: transitioning from fetal research to regenerative healing[J].Wiley Interdiscip Rev Dev Biol,2018,7(2): 10.1002/wdev.309.DOI: 10.1002/wdev.309. [5] CastañoO,Pérez-AmodioS,Navarro-RequenaC,et al.Instructive microenvironments in skin wound healing: biomaterials as signal releasing platforms[J].Adv Drug Deliv Rev,2018,129:95-117.DOI: 10.1016/j.addr.2018.03.012. [6] TracyLE,MinasianRA,CatersonEJ.Extracellular matrix and dermal fibroblast function in the healing wound[J].Adv Wound Care (New Rochelle),2016,5(3):119-136.DOI: 10.1089/wound.2014.0561. [7] 程飚,付小兵.微环境控制是实现创面完美修复的必由之路[J].中华烧伤杂志,2020,36(11):1003-1008.DOI: 10.3760/cma.j.cn501120-20201009-00429. [8] HynesRO.The extracellular matrix: not just pretty fibrils[J].Science,2009,326(5957):1216-1219.DOI: 10.1126/science.1176009. [9] JulierZ,ParkAJ,BriquezPS,et al.Promoting tissue regeneration by modulating the immune system[J].Acta Biomater,2017,53:13-28.DOI: 10.1016/j.actbio.2017.01.056. [10] SunG.Pro-regenerative hydrogel restores scarless skin during cutaneous wound healing[J].Adv Healthc Mater,2017,6(23).DOI: 10.1002/adhm.201700659. [11] HaddadAG,GiatsidisG,OrgillDP,et al.Skin substitutes and bioscaffolds: temporary and permanent coverage[J].Clin Plast Surg,2017,44(3):627-634.DOI: 10.1016/j.cps.2017.02.019. [12] KraemerBA. Management of complex distal lower extremity wounds using a porcine urinary bladder matrix (UBM-ECM) [M]// Shiffman MA, Low M. Plastic and thoracic surgery, orthopedics and ophthalmology. Cham: Springer,2018: 3-29. DOI: 10.1007/15695_2017_60. [13] 赵朋,杨敏烈,储国平,等.猪膀胱脱细胞基质和猪脱细胞真皮基质对糖尿病小鼠全层皮肤缺损创面愈合的影响[J].中华烧伤杂志,2020,36(12):1130-1138.DOI: 10.3760/cma.j.cn501120-20200901-00399. [14] HuleihelL,HusseyGS,NaranjoJD,et al.Matrix-bound nanovesicles within ECM bioscaffolds[J].Sci Adv,2016,2(6):e1600502.DOI: 10.1126/sciadv.1600502. [15] ValerioIL,CampbellP,SabinoJ,et al.The use of urinary bladder matrix in the treatment of trauma and combat casualty wound care[J].Regen Med,2015,10(5):611-622.DOI: 10.2217/rme.15.34. [16] HsuKF,ChiuYL,ChiaoHY,et al.Negative-pressure wound therapy combined with artificial dermis (Terudermis) followed by split-thickness skin graft might be an effective treatment option for wounds exposing tendon and bone: a retrospective observation study[J].Medicine (Baltimore),2021,100(14):e25395.DOI: 10.1097/MD.0000000000025395. [17] WolfMT, GangulyS, WangTL, et al. A biologic scaffold-associated type 2 immune microenvironment inhibits tumor formation and synergizes with checkpoint immunotherapy [J]. Sci Transl Med, 2019, 11(477): eaat7973. DOI: 10.1126/scitranslmed.aat7973. [18] WangX, ChungL, HooksJ, et al. Type 2 immunity induced by bladder extracellular matrix enhances corneal wound healing [J]. Sci Adv, 2021, 7(16): eabe2635. DOI: 10.1126/sciadv.abe2635. [19] GriffinDR,ArchangMM,KuanCH,et al.Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing[J].Nat Mater,2021,20(4):560-569.DOI: 10.1038/s41563-020-00844-w. [20] SadtlerK, SinghA, WolfM, et al. Design, clinical translation and immunological response of biomaterials in regenerative medicine [J]. Nat Rev Mater, 2016, 1(7): 16040. DOI: 10.1038/natrevmats.2016.40. [21] RinkevichY,WalmsleyGG,HuMS,et al.Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential[J].Science,2015,348(6232):aaa2151.DOI: 10.1126/science.aaa2151. [22] YannasIV,TzeranisDS,SoP.Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation[J].Wound Repair Regen,2017,25(2):177-191.DOI: 10.1111/wrr.12516. [23] GholipourmalekabadiM,KhosravimelalS,NokhbedehghanZ,et al.Modulation of hypertrophic scar formation using amniotic membrane/electrospun silk fibroin bilayer membrane in a rabbit ear model[J].ACS Biomater Sci Eng,2019,5(3):1487-1496.DOI: 10.1021/acsbiomaterials.8b01521. [24] GrasmanJM,WilliamsMD,RazisCG,et al.Hyperosmolar potassium inhibits myofibroblast conversion and reduces scar tissue formation[J].ACS Biomater Sci Eng,2019,5(10):5327-5336.DOI: 10.1021/acsbiomaterials.9b00810. [25] KalirajanC,PalanisamyT.A ZnO-curcumin nanocomposite embedded hybrid collagen scaffold for effective scarless skin regeneration in acute burn injury[J].J Mater Chem B,2019,7(38):5873-5886.DOI: 10.1039/c9tb01097a. [26] LiuX,MaL,LiangJ,et al.RNAi functionalized collagen-chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring[J].Biomaterials,2013,34(8):2038-2048.DOI: 10.1016/j.biomaterials.2012.11.062. [27] SuN,GaoPL,WangK,et al.Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material interaction[J].Biomaterials,2017,141:74-85.DOI: 10.1016/j.biomaterials.2017.06.028. [28] HanH,NingH,LiuS,et al.Silk biomaterials with vascularization capacity[J].Adv Funct Mater,2016,26(3):421-436.DOI: 10.1002/adfm.201504160. [29] XuY,PengJ,DongX,et al.Combined chemical and structural signals of biomaterials synergistically activate cell-cell communications for improving tissue regeneration[J].Acta Biomater,2017,55:249-261.DOI: 10.1016/j.actbio.2017.03.056. [30] LandryNM,DixonI.Fibroblast mechanosensing, SKI and Hippo signaling and the cardiac fibroblast phenotype: looking beyond TGF-β[J].Cell Signal,2020,76:109802.DOI: 10.1016/j.cellsig.2020.109802. [31] WangJH,ThampattyBP.An introductory review of cell mechanobiology[J].Biomech Model Mechanobiol,2006,5(1):1-16.DOI: 10.1007/s10237-005-0012-z. [32] AtchaH,JairamanA,HoltJR,et al.Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing[J].Nat Commun,2021,12(1):3256.DOI: 10.1038/s41467-021-23482-5. [33] LuuTU, LiuWF. Regulation of macrophages by extracellular matrix composition and adhesion geometry[J]. Regen Eng Transl Med, 2018, 4: 238-246. DOI: 10.1007/s40883-018-0065-z. [34] ChenK,KwonSH,HennD,et al.Disrupting biological sensors of force promotes tissue regeneration in large organisms[J].Nat Commun,2021,12(1):5256.DOI: 10.1038/s41467-021-25410-z. [35] YuJ,ZhangSS,SaitoK,et al.PTEN regulation by Akt-EGR1-ARF-PTEN axis[J].EMBO J,2009,28(1):21-33.DOI: 10.1038/emboj.2008.238. [36] ZhouF,HongY,LiangR,et al.Rapid printing of bio-inspired 3D tissue constructs for skin regeneration[J].Biomaterials,2020,258:120287.DOI: 10.1016/j.biomaterials.2020.120287. [37] KimBS,KwonYW,KongJS,et al.3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering[J].Biomaterials,2018,168:38-53.DOI: 10.1016/j.biomaterials.2018.03.040. [38] YaoB,WangR,WangY,et al.Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration[J].Sci Adv,2020,6(10):eaaz1094.DOI: 10.1126/sciadv.aaz1094. [39] MurrayRZ,WestZE,CowinAJ,et al.Development and use of biomaterials as wound healing therapies[J/OL].Burns Trauma,2019,7:2[2021-10-29].https://pubmed.ncbi.nlm.nih.gov/30701184/.DOI: 10.1186/s41038-018-0139-7. [40] GaharwarAK, SinghI, KhademhosseiniA. Engineered biomaterials for in situ tissue regeneration [J]. Nat Rev Mater, 2020, 5: 686-705. DOI: 10.1038/s41578-020-0209-x. -
脱细胞真皮基质(ADM) 重症监护病房(ICU) 动脉血氧分压(PaO2) 丙氨酸转氨酶(ALT) 白细胞介素(IL) 磷酸盐缓冲液(PBS) 急性呼吸窘迫综合征(ARDS) 角质形成细胞(KC) 反转录-聚合酶链反应(RT-PCR) 天冬氨酸转氨酶(AST) 半数致死烧伤面积(LA50) 全身炎症反应综合征(SIRS) 集落形成单位(CFU) 内毒素/脂多糖(LPS) 超氧化物歧化酶(SOD) 细胞外基质(ECM) 丝裂原活化蛋白激酶(MAPK) 动脉血氧饱和度(SaO2) 表皮生长因子(EGF) 最低抑菌浓度(MIC) 体表总面积(TBSA) 酶联免疫吸附测定(ELISA) 多器官功能障碍综合征(MODS) 转化生长因子(TGF) 成纤维细胞(Fb) 多器官功能衰竭(MOF) 辅助性T淋巴细胞(Th) 成纤维细胞生长因子(FGF) 一氧化氮合酶(NOS) 肿瘤坏死因子(TNF) 3-磷酸甘油醛脱氢酶(GAPDH) 负压伤口疗法(NPWT) 血管内皮生长因子(VEGF) 苏木精-伊红(HE) 动脉血二氧化碳分压(PaCO2) 负压封闭引流(VSD)
表(1)
计量
- 文章访问数: 626
- HTML全文浏览量: 369
- PDF下载量: 145
- 被引次数: 0