留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物强度电场对人表皮细胞株HaCaT微管乙酰化的调节作用

邬亚婷 张泽 冀然 张书豪 王文平 武潮 张家平 江旭品 张恒术

邬亚婷, 张泽, 冀然, 等. 生物强度电场对人表皮细胞株HaCaT微管乙酰化的调节作用[J]. 中华烧伤与创面修复杂志, 2022, 38(11): 1066-1072. DOI: 10.3760/cma.j.cn501120-20211105-00377.
引用本文: 邬亚婷, 张泽, 冀然, 等. 生物强度电场对人表皮细胞株HaCaT微管乙酰化的调节作用[J]. 中华烧伤与创面修复杂志, 2022, 38(11): 1066-1072. DOI: 10.3760/cma.j.cn501120-20211105-00377.
Wu YT,Zhang Z,Ji R,et al.Regulatory effects of bio-intensity electric field on microtubule acetylation in human epidermal cell line HaCaT[J].Chin J Burns Wounds,2022,38(11):1066-1072.DOI: 10.3760/cma.j.cn501120-20211105-00377.
Citation: Wu YT,Zhang Z,Ji R,et al.Regulatory effects of bio-intensity electric field on microtubule acetylation in human epidermal cell line HaCaT[J].Chin J Burns Wounds,2022,38(11):1066-1072.DOI: 10.3760/cma.j.cn501120-20211105-00377.

生物强度电场对人表皮细胞株HaCaT微管乙酰化的调节作用

doi: 10.3760/cma.j.cn501120-20211105-00377
基金项目: 

国家自然科学基金面上项目 82072172

国家自然科学基金青年科学基金项目 81601683

详细信息
    通讯作者:

    江旭品,Email:jiangxupin@126.com

    张恒术,Email:1390527030@qq.com

Regulatory effects of bio-intensity electric field on microtubule acetylation in human epidermal cell line HaCaT

Funds: 

Gerenal Program of National Natural Science Foundation of China 82072172

Youth Found of National Natural Science Foundation of China 81601683

More Information
  • 摘要:   目的  探讨生物强度电场对人表皮细胞株HaCaT方向性迁移及微管乙酰化水平的调节作用,以期为临床创面修复提供分子理论依据。  方法  采用实验研究方法。取HaCaT细胞,分为置于电场装置中不通电处理3 h的模拟电场组和用强度200 mV/mm电场处理3 h的电场处理组(处理方法下同,样本数分别为54、52),在活细胞工作站中观察处理3 h内细胞运动的方向并计算细胞运动的位移速度、轨迹速度及运动方向性cosθ。取2批HaCaT细胞,分为模拟电场组和用强度200 mV/mm的电场处理相应时间的电场处理1 h组、电场处理2 h组、电场处理3 h组及模拟电场组和用相应强度的电场处理3 h的100 mV/mm电场组、200 mV/mm电场组、300 mV/mm电场组,采用蛋白质印迹法检测乙酰化α-微管蛋白的表达(样本数均为3)。取HaCaT细胞,分为模拟电场组和电场处理组,采用免疫荧光法观测乙酰化α-微管蛋白的表达及定位(样本数为3)。对数据行Kruskal-Wallis H检验、Mann-Whitney U检验、Bonferroni校正、单因素方差分析、LSD检验及独立样本t检验。  结果  处理3 h内,与模拟电场组相比,电场处理组细胞有明显定向迁移的趋势,位移速度、轨迹速度均明显加快(Z值分别为-8.53、-2.05,P<0.05或P<0.01),方向性明显增强(Z=-8.65,P<0.01)。与模拟电场组(0.80±0.14)比较,电场处理1 h组、电场处理2 h组细胞中乙酰化α-微管蛋白表达量(1.50±0.08、1.89±0.06)均无明显变化(P>0.05),电场处理3 h组细胞乙酰化α-微管蛋白表达量(3.37±0.36)明显增高(Z=-3.06,P<0.05)。处理3 h,100 mV/mm电场组、200 mV/mm电场组、300 mV/mm电场组细胞乙酰化α-微管蛋白表达量分别为1.63±0.05、2.24±0.08、2.00±0.13,均较模拟电场组的0.95±0.27明显增高(P<0.01);200 mV/mm电场组、300 mV/mm电场组细胞乙酰化α-微管蛋白表达量均较100 mV/mm电场组明显增高(P<0.01);300 mV/mm电场组细胞乙酰化α-微管蛋白表达量较200 mV/mm电场组明显降低(P<0.05)。处理3 h,电场处理组细胞中乙酰化α-微管蛋白的分布较模拟电场组更具有方向性,电场处理组细胞乙酰化α-微管蛋白的表达量较模拟电场组明显增高(t=5.78,P<0.01)。  结论  生物强度电场可促进HaCaT细胞定向迁移,在200 mV/mm电场强度下处理3 h可明显促进微管乙酰化水平。

     

  • 1  蛋白质印迹法检测模拟电场组和用强度200 mV/mm的电场处理不同时间的3组人永生化表皮细胞HaCaT乙酰化α-微管蛋白的表达

    注:GAPDH为3-磷酸甘油醛脱氢酶;条带上方1、2、3、4分别为模拟电场组、电场处理1 h组、电场处理2 h 组和电场处理3 h组

    2  蛋白质印迹法检测模拟电场组与不同强度电场处理3组人永生化表皮细胞HaCaT中乙酰化α-微管蛋白的表达

    注:GAPDH为3-磷酸甘油醛脱氢酶;条带上方1、2、3、4分别为模拟电场组、100 mV/mm电场组、200 mV/mm电场组、300 mV/mm电场组

    3  模拟电场组和用强度200 mV/mm的电场处理3 h的电场处理组人永生化表皮细胞HaCaT乙酰化α-微管蛋白的表达。3A、3B.分别为模拟电场组和电场处理组HaCaT细胞中乙酰化α-微管蛋白染色重叠图片,图3B中乙酰化α-微管蛋白表达明显多于图3A Alexa Fluor 488-4',6-二脒基-2-苯基吲哚-鬼笔环肽×200;3C、3D.分别为模拟电场组和电场处理组HaCaT细胞中乙酰化α-微管蛋白局部染色重叠图片,图3D中乙酰化α-微管蛋白呈极性分布 Alexa Fluor 488-4',6-二脒基-2-苯基吲哚-鬼笔环肽×600

    注:绿色荧光标记乙酰化α-微管蛋白,蓝色荧光标记细胞核,红色荧光标记细胞骨架

    表1  2组人永生化表皮细胞HaCaT处理3 h后cosθ与轨迹速度和位移速度比较[MQ1Q3)]

    组别样本数cosθ轨迹速度(μm/min)位移速度(μm/min)
    模拟电场组540.407(-0.010,0.914)0.532(0.459,0.641)0.131(0.068,0.240)
    电场处理组52-0.986(-0.997,-0.941)0.628(0.374,0.834)0.504(0.390,0.548)
    Z-8.65-2.05-8.53
    P<0.0010.041<0.001
    注:以函数cosθ的计算值量化细胞迁移方向性的变化
    下载: 导出CSV
  • [1] GradaA, Otero-VinasM, Prieto-CastrilloF, et al. Research techniques made simple: analysis of collective cell migration using the wound healing assay[J]. J Invest Dermatol, 2017, 137(2): e11-e16. DOI: 10.1016/j.jid.2016.11.020.
    [2] 冀然,张泽,王文平,等.生物强度电场对人表皮细胞株 HaCaT和小鼠表皮细胞运动性及CD9表达的影响[J].中华烧伤杂志,2021,37(1):34-41.DOI: 10.3760/cma.j.cn501120-20200115-00023.
    [3] TaiG, TaiM, ZhaoM. Electrically stimulated cell migration and its contribution to wound healing[J/OL]. Burns Trauma, 2018, 6(1): 20[2022-10-23]. https://pubmed.ncbi.nlm.nih.gov/30003115/. DOI: 10.1186/s41038-018-0123-2.
    [4] 王文平,冀然,张泽,等.生物强度电场对人皮肤成纤维细胞转化的调节作用[J].中华烧伤与创面修复杂志,2022,38(4):354-362.DOI: 10.3760/cma.j.cn501120-20210112-00017.
    [5] JiR,TengM,ZhangZ,et al.Electric field down-regulates CD9 to promote keratinocytes migration through AMPK pathway[J].Int J Med Sci,2020,17(7):865-873.DOI: 10.7150/ijms.42840.
    [6] LinBJ,TsaoSH,ChenA,et al.Lipid rafts sense and direct electric field-induced migration[J].Proc Natl Acad Sci U S A,2017,114(32):8568-8573.DOI: 10.1073/pnas.1702526114.
    [7] GarcinC,StraubeA.Microtubules in cell migration[J].Essays Biochem,2019,63(5):509-520.DOI: 10.1042/EBC20190016.
    [8] JankeC, MontagnacG. Causes and consequences of microtubule acetylation[J]. Curr Biol, 2017, 27(23):R1287-R1292. DOI: 10.1016/j.cub.2017.10.044.
    [9] MorelliG, EvenA, Gladwyn-NgI, et al. p27Kip1 modulates axonal transport by regulating α-tubulin acetyltransferase 1 stability[J]. Cell Rep, 2018, 23(8): 2429-2442. DOI: 10.1016/j.celrep.2018.04.083.
    [10] ChawanV, YevateS, GajbhiyeR, et al. Acetylation/deacetylation and microtubule associated proteins influence flagellar axonemal stability and sperm motility[J]. Biosci Rep, 2020, 40(12): BSR20202442. DOI: 10.1042/BSR20202442.
    [11] DeakinNO, TurnerCE. Paxillin inhibits HDAC6 to regulate microtubule acetylation, Golgi structure, and polarized migration[J]. J Cell Biol, 2014, 206(3): 395-413. DOI: 10.1083/jcb.201403039.
    [12] NuccitelliR. A role for endogenous electric fields in wound healing[J]. Curr Top Dev Biol, 2003, 58: 1-26. DOI: 10.1016/S0070-2153(03)58001-2.
    [13] CaiJ, ZhongY, TianS. Naturally occurring davanone terpenoid exhibits anticancer potential against ovarian cancer cells by inducing programmed cell death, by inducing caspase-dependent apoptosis, loss of mitochondrial membrane potential, inhibition of cell migration and invasion and targeting PI3K/AKT/MAPK signaling pathway[J]. J BUON, 2020, 25(5): 2301-2307.
    [14] GoodsonHV, JonassonEM. Microtubules and microtubule-associated proteins[J]. Cold Spring Harb Perspect Biol, 2018, 10(6): a022608. DOI: 10.1101/cshperspect.a022608.
    [15] LaFlammeSE, Mathew-SteinerS, SinghN, et al. Integrin and microtubule crosstalk in the regulation of cellular processes[J]. Cell Mol Life Sci, 2018, 75(22): 4177-4185. DOI: 10.1007/s00018-018-2913-x.
    [16] JankeC, MagieraMM. The tubulin code and its role in controlling microtubule properties and functions[J]. Nat Rev Mol Cell Biol, 2020, 21(6): 307-326. DOI: 10.1038/s41580-020-0214-3.
    [17] Roll-MecakA. The tubulin code in microtubule dynamics and information encoding[J]. Dev Cell, 2020, 54(1): 7-20. DOI: 10.1016/j.devcel.2020.06.008.
    [18] LiuN, XiongY, RenY, et al. Proteomic profiling and functional characterization of multiple post-translational modifications of tubulin[J]. J Proteome Res, 2015, 14(8): 3292-3304. DOI: 10.1021/acs.jproteome.5b00308.
    [19] XuZ, SchaedelL, PortranD, et al. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation[J]. Science, 2017, 356(6335): 328-332. DOI: 10.1126/science.aai8764.
    [20] Eshun-WilsonL, ZhangR, PortranD, et al. Effects of α-tubulin acetylation on microtubule structure and stability[J]. Proc Natl Acad Sci U S A, 2019, 116(21): 10366-10371. DOI: 10.1073/pnas.1900441116.
    [21] BanceB, SeetharamanS, LeducC, et al. Microtubule acetylation but not detyrosination promotes focal adhesion dynamics and astrocyte migration[J]. J Cell Sci, 2019, 132(7): jcs225805. DOI: 10.1242/jcs.225805.
    [22] AtkinsonSJ, GontarczykAM, AlghamdiAA, et al. The β3-integrin endothelial adhesome regulates microtubule-dependent cell migration[J]. EMBO Rep, 2018, 19(7): e44578. DOI: 10.15252/embr.201744578.
    [23] MyatMM, RashmiRN, MannaD, et al. Drosophila KASH-domain protein Klarsicht regulates microtubule stability and integrin receptor localization during collective cell migration[J]. Dev Biol, 2015, 407(1): 103-114. DOI: 10.1016/j.ydbio.2015.08.003.
    [24] Rampioni VinciguerraGL, CitronF, SegattoI, et al. p27kip1 at the crossroad between actin and microtubule dynamics[J]. Cell Div, 2019, 14(1): 2. DOI: 10.1186/s13008-019-0045-9.
    [25] ReedNA, CaiD, BlasiusTL, et al. Microtubule acetylation promotes kinesin-1 binding and transport[J]. Curr Biol, 2006, 16(21): 2166-2172. DOI: 10.1016/j.cub.2006.09.014.
    [26] Castro-CastroA, JankeC, MontagnacG, et al. ATAT1/MEC-17 acetyltransferase and HDAC6 deacetylase control a balance of acetylation of alpha-tubulin and cortactin and regulate MT1-MMP trafficking and breast tumor cell invasion[J]. Eur J Cell Biol, 2012, 91(11/12): 950-960. DOI: 10.1016/j.ejcb.2012.07.001.
    [27] van DijkJ, BompardG, CauJ, et al. Microtubule polyglutamylation and acetylation drive microtubule dynamics critical for platelet formation[J]. BMC Biol, 2018, 16(1): 116. DOI: 10.1186/s12915-018-0584-6.
    [28] ShiP, WangY, HuangY, et al. Arp2/3-branched actin regulates microtubule acetylation levels and affects mitochondrial distribution[J]. J Cell Sci, 2019, 132(6): jcs226506. DOI: 10.1242/jcs.226506.
    [29] HubbertC, GuardiolaA, ShaoR, et al. HDAC6 is a microtubule-associated deacetylase[J]. Nature, 2002, 417(6887): 455-458. DOI: 10.1038/417455a.
    [30] AdalbertR, KaiedaA, AntoniouC, et al. Novel HDAC6 inhibitors increase tubulin acetylation and rescue axonal transport of mitochondria in a model of charcot-marie-tooth type 2F[J]. ACS Chem Neurosci, 2020, 11(3): 258-267. DOI: 10.1021/acschemneuro.9b00338.
    [31] KershawS, MorganDJ, BoydJ, et al. Glucocorticoids rapidly inhibit cell migration through a novel, non-transcriptional HDAC6 pathway[J]. J Cell Sci, 2020, 133(11): jcs242842. DOI: 10.1242/jcs.242842.
    [32] Valenzuela-FernándezA, CabreroJR, SerradorJM, et al. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions[J]. Trends Cell Biol, 2008, 18(6): 291-297. DOI: 10.1016/j.tcb.2008.04.003.
    [33] KeB, ChenY, TuW, et al. Inhibition of HDAC6 activity in kidney diseases: a new perspective[J]. Mol Med, 2018, 24(1): 33. DOI: 10.1186/s10020-018-0027-4.
    [34] KalinskiAL, KarAN, CraverJ, et al. Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition[J]. J Cell Biol, 2019, 218(6): 1871-1890. DOI: 10.1083/jcb.201702187.
    [35] SeidelC, SchnekenburgerM, DicatoM, et al. Histone deacetylase 6 in health and disease[J]. Epigenomics, 2015, 7(1): 103-118. DOI: 10.2217/epi.14.69.
    [36] Shafaq-ZadahM, Gomes-SantosCS, BardinS, et al. Persistent cell migration and adhesion rely on retrograde transport of β1 integrin[J]. Nature Cell Biology, 2016, 18(1): 54-64. DOI: 10.1038/ncb3287.
    [37] RenX, SunH, LiuJ, et al. Keratinocyte electrotaxis induced by physiological pulsed direct current electric fields[J]. Bioelectrochemistry, 2019, 127: 113-124. DOI: 10.1016/j.bioelechem.2019.02.001.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  27
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-05

目录

    /

    返回文章
    返回