[1] |
AlonsoL, FuchsE.Stem cells of the skin epithelium[J].Proc Natl Acad Sci U S A,2003,100(Suppl 1):S11830-11835.DOI: 10.1073/pnas.1734203100.
|
[2] |
MuraiK, SkrupskelyteG, PiedrafitaG,et al.Epidermal tissue adapts to restrain progenitors carrying clonal p53 mutations[J].Cell Stem Cell,2018,23(5):687-699.e8.DOI: 10.1016/j.stem.2018.08.017.
|
[3] |
PiedrafitaG, KostiouV, WabikA, et al. A single-progenitor model as the unifying paradigm of epidermal and esophageal epithelial maintenance in mice[J]. Nat Commun,2020,11(1):1429.DOI: 10.1038/s41467-020-15258-0.
|
[4] |
Sánchez-DanésA, HannezoE, LarsimontJC, et al. Defining the clonal dynamics leading to mouse skin tumour initiation[J]. Nature,2016,536(7616):298-303.DOI: 10.1038/nature19069.
|
[5] |
SadaA, JacobF, LeungE, et al. Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin[J]. Nat Cell Biol,2016,18(6):619-631.DOI: 10.1038/ncb3359.
|
[6] |
MesaKR, KawaguchiK, CockburnK, et al. Homeostatic epidermal stem cell self-renewal is driven by local differentiation[J]. Cell Stem Cell,2018,23(5):677-686.e4.DOI: 10.1016/j.stem.2018.09.005.
|
[7] |
ZouZR, LongX, ZhaoQ, et al.A single-cell transcriptomic atlas of human skin aging[J].Dev Cell,2021,56(3):383-397.e8.DOI: 10.1016/j.devcel.2020.11.002.
|
[8] |
WangSX, DrummondML, Guerrero-JuarezCF, et al. Single cell transcriptomics of human epidermis identifies basal stem cell transition states[J]. Nat Commun,2020,11(1):4239.DOI: 10.1038/s41467-020-18075-7.
|
[9] |
HeWY, YeJG, XuHY, et al. Differential expression of α6 and β1 integrins reveals epidermal heterogeneity at single-cell resolution[J]. J Cell Biochem,2020,121(3):2664-2676.DOI: 10.1002/jcb.29487.
|
[10] |
HaenselD,JinSQ,SunP,et al.Defining epidermal basal cell states during skin homeostasis and wound healing using single-cell transcriptomics[J].Cell Rep,2020,30(11):3932-3947.e6.DOI: 10.1016/j.celrep.2020.02.091.
|
[11] |
RadiceGP. The spreading of epithelial cells during wound closure in Xenopus larvae[J]. Dev Biol,1980,76(1):26-46.DOI: 10.1016/0012-1606(80)90360-7.
|
[12] |
PaladiniRD, TakahashiK, BravoNS, et al. Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16[J]. J Cell Biol,1996,132(3):381-397.DOI: 10.1083/jcb.132.3.381.
|
[13] |
AragonaM,DekoninckS,RulandsS,et al.Defining stem cell dynamics and migration during wound healing in mouse skin epidermis[J].Nat Commun,2017,8:14684.DOI: 10.1038/ncomms14684.
|
[14] |
ParkS, GonzalezDG, GuiraoB, et al. Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice[J]. Nat Cell Biol,2017,19(2):155-163.DOI: 10.1038/ncb3472.
|
[15] |
DonatiG, RognoniE, HiratsukaT, et al. Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties[J]. Nat Cell Biol,2017,19(6):603-613.DOI: 10.1038/ncb3532.
|
[16] |
JoostS, JacobT, SunXY, et al. Single-cell transcriptomics of traced epidermal and hair follicle stem cells reveals rapid adaptations during wound healing[J]. Cell Rep,2018,25(3):585-597.e7.DOI: 10.1016/j.celrep.2018.09.059.
|
[17] |
WierEM, GarzaLA. Through the lens of hair follicle neogenesis, a new focus on mechanisms of skin regeneration after wounding[J]. Semin Cell Dev Biol,2020,100:122-129.DOI: 10.1016/j.semcdb.2019.10.002.
|
[18] |
GeYJ,GomezNC,AdamRC,et al.Stem cell lineage infidelity drives wound repair and cancer[J].Cell,2017,169(4):636-650.e14.DOI: 10.1016/j.cell.2017.03.042.
|
[19] |
SubramaniamT,FauziMB,LokanathanY,et al.The role of calcium in wound healing[J].Int J Mol Sci,2021,22(12):6486.DOI: 10.3390/ijms22126486.
|
[20] |
TuCL, CelliA, MauroT, et al. Calcium-sensing receptor regulates epidermal intracellular Ca2+ signaling and re-epithelialization after wounding[J]. J Invest Dermatol,2019,139(4):919-929.DOI: 10.1016/j.jid.2018.09.033.
|
[21] |
OdaY, TuCL, MenendezA, et al. Vitamin D and calcium regulation of epidermal wound healing[J]. J Steroid Biochem Mol Biol,2016,164:379-385.DOI: 10.1016/j.jsbmb.2015.08.011.
|
[22] |
Villarreal-PonceA, TirunehMW, LeeJ, et al. Keratinocyte-macrophage crosstalk by the Nrf2/Ccl2/EGF signaling axis orchestrates tissue repair[J]. Cell Rep,2020,33(8):108417.DOI: 10.1016/j.celrep.2020.108417.
|
[23] |
HuangSM, WuCS, ChiuMH, et al. High glucose environment induces M1 macrophage polarization that impairs keratinocyte migration via TNF-α: an important mechanism to delay the diabetic wound healing[J]. J Dermatol Sci,2019,96(3):159-167.DOI: 10.1016/j.jdermsci.2019.11.004.
|
[24] |
TurnerCT, WatersJM, JacksonJE, et al. Fibroblast-specific upregulation of Flightless I impairs wound healing[J]. Exp Dermatol,2015,24(9):692-697.DOI: 10.1111/exd.12751.
|
[25] |
QiangL, YangS, CuiYH, et al. Keratinocyte autophagy enables the activation of keratinocytes and fibroblastsand facilitates wound healing[J]. Autophagy,2021,17(9):2128-2143.DOI: 10.1080/15548627.2020.1816342.
|
[26] |
朱海杰,陈成,张小容,等. 树突状表皮T细胞调节小鼠表皮干细胞增殖和分化促进小鼠全层皮肤缺损创面愈合的机制研究[J].中华烧伤杂志,2020,36(10):905-914.DOI: 10.3760/cma.j.cn501120-20200623-00324.
|
[27] |
4thHolmes JH, MolnarJA, ShuppJW, et al. Demonstration of the safety and effectiveness of the RECELL® System combined with split-thickness meshed autografts for the reduction of donor skin to treat mixed-depth burn injuries[J]. Burns,2019,45(4):772-782.DOI: 10.1016/j.burns.2018.11.002.
|
[28] |
KowalS, KrugerE, BilirP, et al. Cost-effectiveness of the use of autologous cell harvesting device compared to standard of care for treatment of severe burns in the United States[J]. Adv Ther,2019,36(7):1715-1729.DOI: 10.1007/s12325-019-00961-2.
|
[29] |
JohnstoneP, KweiJS, FilobbosG, et al. Successful application of keratinocyte suspension using autologous fibrin spray[J]. Burns,2017,43(3):e27-e30.DOI: 10.1016/j.burns.2016.05.010.
|
[30] |
Klama-BaryłaA, KitalaD, ŁabuśW, et al. Autologous and allogeneic skin cell grafts in the treatment of severely burned patients: retrospective clinical study[J]. Transplant Proc,2018,50(7):2179-2187.DOI: 10.1016/j.transproceed.2017.11.079.
|
[31] |
MalkocA, WongDT. Lessons learned from two survivors of greater than 90% total body surface area full thickness burn injuries using NovoSorb Biodegradable Temporizing MatrixTM and autologous skin cell suspension, RECELLTM: a case series[J]. J Burn Care Res,2021,42(3):577-585.DOI: 10.1093/jbcr/iraa176.
|
[32] |
ShangYR, LiDW, ShenCA. The Benefit of microskin in combination with autologous keratinocyte suspension to treat full skin loss in vivo[J]. J Burn Care Res,2017,38(6):348-353.DOI: 10.1097/BCR.0000000000000552.
|
[33] |
LuGZ, CaiLL, ZhaoP, et al. Mixed suspension of cultured autologous and allogenic keratinocytes in fibrin glue for the treatment of full-thickness burns[J]. Wounds,2011,23(2):32-37.
|
[34] |
YoonJ, YangHT, YimH, et al. Effectiveness and safety of a thermosensitive hydrogel cultured epidermal allograft for burns[J]. Adv Skin Wound Care,2017,30(12):559-564.DOI: 10.1097/01.ASW.0000526882.14740.01.
|
[35] |
CheshireP, ZhafiraAS, BanakhI, et al. Xeno-free expansion of adult keratinocytes for clinical application: the use of human-derived feeder cells and serum[J]. Cell Tissue Res,2019,376(3):389-400.DOI: 10.1007/s00441-018-02986-5.
|
[36] |
HassanzadehH, MatinMM, Naderi-MeshkinH, et al. Using paracrine effects of Ad-MSCs on keratinocyte cultivation and fabrication of epidermal sheets for improving clinical applications[J]. Cell Tissue Bank,2018,19(4):531-547.DOI: 10.1007/s10561-018-9702-5.
|
[37] |
姜耀男,王雨翔,郑勇军,等.含异体角质形成细胞和成纤维细胞的细胞膜片治疗Ⅱ度烧伤创面的临床研究[J].中华烧伤杂志,2020,36(3):171-178. DOI: 10.3760/cma.j.cn501120-20191113-00426.
|
[38] |
JacksonCJ, ReppeS, EidetJR, et al. Optimization of storage temperature for retention of undifferentiated cell character of cultured human epidermal cell sheets[J]. Sci Rep,2017,7(1):8206.DOI: 10.1038/s41598-017-08586-7.
|
[39] |
RingstadH, ReppeS, SchøyenTH,et al.Stem cell function is conserved during short-term storage of cultured epidermal cell sheets at 12 ℃[J].PLoS One,2020,15(5):e0232270.DOI: 10.1371/journal.pone.0232270.
|
[40] |
MotamediS, EsfandpourA, BabajaniA,et al.The current challenges on spray-based cell delivery to the skin wounds[J].Tissue Eng Part C Methods,2021,27(10):543-558.DOI: 10.1089/ten.TEC.2021.0158.
|
[41] |
Esteban-VivesR, CorcosA, ChoiMS, et al. Cell-spray auto-grafting technology for deep partial-thickness burns: problems and solutions during clinical implementation[J]. Burns,2018,44(3):549-559.DOI: 10.1016/j.burns.2017.10.008.
|
[42] |
MolnarJA, WalkerN, SteeleTN, et al. Initial experience with autologous skin cell suspension for treatment of deep partial-thickness facial burns[J]. J Burn Care Res,2020,41(5):1045-1051.DOI: 10.1093/jbcr/iraa037.
|
[43] |
Esteban-VivesR, YoungM, OverP, et al. In vitro keratinocyte expansion for cell transplantation therapy is associated with differentiation and loss of basal layer derived progenitor population[J]. Differentiation,2015,89(5):137-145. DOI: 10.1016/j.diff.2015.05.002.
|
[44] |
ChemaliM, LaurentA, ScalettaC, et al. Burn center organization and cellular therapy integration: managing risks and costs[J]. J Burn Care Res,2021,42(5):911-924.DOI: 10.1093/jbcr/irab080.
|