[1] |
AmulicB, CazaletC, HayesGL, et al. Neutrophil function: from mechanisms to disease[J]. Annu Rev Immunol, 2012,30:459-489. DOI: 10.1146/annurev-immunol-020711-074942.
|
[2] |
PetriB, SanzMJ. Neutrophil chemotaxis[J]. Cell Tissue Res, 2018,371(3):425-436. DOI: 10.1007/s00441-017-2776-8.
|
[3] |
FoxS, LeitchAE, DuffinR, et al. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease[J]. J Innate Immun, 2010,2(3):216-227. DOI: 10.1159/000284367.
|
[4] |
RobertsRE, HallettMB. Neutrophil cell shape change: mechanism and signalling during cell spreading and phagocytosis[J]. Int J Mol Sci, 2019,20(6):1383.DOI: 10.3390/ijms20061383.
|
[5] |
MollinedoF. Neutrophil degranulation, plasticity, and cancer metastasis[J]. Trends Immunol, 2019,40(3):228-242. DOI: 10.1016/j.it.2019.01.006.
|
[6] |
RosalesC. Neutrophils at the crossroads of innate and adaptive immunity[J]. J Leukoc Biol, 2020,108(1):377-396. DOI: 10.1002/JLB.4MIR0220-574RR.
|
[7] |
KolaczkowskaE, KubesP. Neutrophil recruitment and function in health and inflammation[J]. Nat Rev Immunol, 2013,13(3):159-175. DOI: 10.1038/nri3399.
|
[8] |
NavegantesKC, de Souza GomesR, PereiraPAT, et al. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity[J]. J Transl Med, 2017,15(1):36. DOI: 10.1186/s12967-017-1141-8.
|
[9] |
RosalesC. Neutrophil: a cell with many roles in inflammation or several cell types?[J]. Front Physiol, 2018,9:113. DOI: 10.3389/fphys.2018.00113.
|
[10] |
LiewPX, KubesP. The neutrophil's role during health and disease[J]. Physiol Rev, 2019,99(2):1223-1248. DOI: 10.1152/physrev.00012.2018.
|
[11] |
GalliSJ, BorregaardN, WynnTA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils[J]. Nat Immunol, 2011,12(11):1035-1044. DOI: 10.1038/ni.2109.
|
[12] |
Silvestre-RoigC, FridlenderZG, GlogauerM, et al. Neutrophil diversity in health and disease[J]. Trends Immunol, 2019,40(7):565-583. DOI: 10.1016/j.it.2019.04.012.
|
[13] |
HellebrekersP, VrisekoopN, KoendermanL. Neutrophil phenotypes in health and disease[J]. Eur J Clin Invest, 2018,48 Suppl 2(Suppl Suppl 2):e12943. DOI: 10.1111/eci.12943.
|
[14] |
XieX, ShiQ, WuP, et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection[J]. Nat Immunol, 2020,21(9):1119-1133. DOI: 10.1038/s41590-020-0736-z.
|
[15] |
QiX, YuY, SunR, et al. Identification and characterization of neutrophil heterogeneity in sepsis[J]. Crit Care, 2021,25(1):50. DOI: 10.1186/s13054-021-03481-0.
|
[16] |
GieseMA, HindLE, HuttenlocherA. Neutrophil plasticity in the tumor microenvironment[J]. Blood, 2019,133(20):2159-2167. DOI: 10.1182/blood-2018-11-844548.
|
[17] |
CarvalhoLO, AquinoEN, NevesAC, et al. The neutrophil nucleus and its role in neutrophilic function[J]. J Cell Biochem, 2015,116(9):1831-1836. DOI: 10.1002/jcb.25124.
|
[18] |
MortazE, AlipoorSD, AdcockIM, et al. Update on neutrophil function in severe inflammation[J]. Front Immunol, 2018,9:2171. DOI: 10.3389/fimmu.2018.02171.
|
[19] |
De FilippoK, RankinSM. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease[J]. Eur J Clin Invest, 2018,48 Suppl 2(Suppl Suppl 2):e12949. DOI: 10.1111/eci.12949.
|
[20] |
UderhardtS, MartinsAJ, TsangJS, et al. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage[J]. Cell, 2019,177(3):541-555.e17. DOI: 10.1016/j.cell.2019.02.028.
|
[21] |
SaffarzadehM, JuenemannC, QueisserMA, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones[J]. PLoS One, 2012,7(2):e32366. DOI: 10.1371/journal.pone.0032366.
|
[22] |
WangX, QinW, XuX, et al. Endotoxin-induced autocrine ATP signaling inhibits neutrophil chemotaxis through enhancing myosin light chain phosphorylation[J]. Proc Natl Acad Sci U S A, 2017,114(17):4483-4488. DOI: 10.1073/pnas.1616752114.
|
[23] |
YangY, LiuL, GuoZ, et al. A novel computer vision-based assessment of neutrophil chemotaxis in patients with severe infection[J]. Clin Transl Immunology, 2021,10(8):e1333. DOI: 10.1002/cti2.1333.
|
[24] |
SpaanAN, SurewaardBG, NijlandR, et al. Neutrophils versus Staphylococcus aureus: a biological tug of war[J]. Annu Rev Microbiol, 2013,67:629-650. DOI: 10.1146/annurev-micro-092412-155746.
|
[25] |
NowickaD, GrywalskaE. Staphylococcus aureus and host immunity in recurrent furunculosis[J]. Dermatology, 2019,235(4):295-305. DOI: 10.1159/000499184.
|
[26] |
CurleyG, ContrerasMM, NicholAD, et al. Hypercapnia and acidosis in sepsis: a double-edged sword?[J]. Anesthesiology, 2010,112(2):462-472. DOI: 10.1097/ALN.0b013e3181ca361f.
|
[27] |
MetzemaekersM, GouwyM, ProostP. Neutrophil chemoattractant receptors in health and disease: double-edged swords[J]. Cell Mol Immunol, 2020,17(5):433-450. DOI: 10.1038/s41423-020-0412-0.
|
[28] |
LarsonRC, MausMV. Recent advances and discoveries in the mechanisms and functions of CAR T cells[J]. Nat Rev Cancer, 2021,21(3):145-161. DOI: 10.1038/s41568-020-00323-z.
|
[29] |
MittalM, SiddiquiMR, TranK, et al. Reactive oxygen species in inflammation and tissue injury[J]. Antioxid Redox Signal, 2014,20(7):1126-1167. DOI: 10.1089/ars.2012.5149.
|
[30] |
BenjaminJT, PlosaEJ, SucreJM, et al. Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD[J]. J Clin Invest, 2021,131(1):e139481.DOI: 10.1172/JCI139481.
|
[31] |
CuiC, ChakrabortyK, TangXA, et al. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis[J]. Cell, 2021,184(12):3163-3177.e21. DOI: 10.1016/j.cell.2021.04.016.
|
[32] |
HuhSJ, LiangS, SharmaA, et al. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development[J]. Cancer Res, 2010,70(14):6071-6082. DOI: 10.1158/0008-5472.CAN-09-4442.
|
[33] |
TazzymanS, NiazH, MurdochC. Neutrophil-mediated tumour angiogenesis: subversion of immune responses to promote tumour growth[J]. Semin Cancer Biol, 2013,23(3):149-158. DOI: 10.1016/j.semcancer.2013.02.003.
|
[34] |
GranotZ, HenkeE, ComenEA, et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung[J]. Cancer Cell, 2011,20(3):300-314. DOI: 10.1016/j.ccr.2011.08.012.
|
[35] |
López-LagoMA, PosnerS, ThodimaVJ, et al. Neutrophil chemokines secreted by tumor cells mount a lung antimetastatic response during renal cell carcinoma progression[J]. Oncogene, 2013,32(14):1752-1760. DOI: 10.1038/onc.2012.201.
|
[36] |
NjeimR, AzarWS, FaresAH, et al. NETosis contributes to the pathogenesis of diabetes and its complications[J]. J Mol Endocrinol, 2020,65(4):R65-R76. DOI: 10.1530/JME-20-0128.
|
[37] |
WongSL, DemersM, MartinodK, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing[J]. Nat Med, 2015,21(7):815-819. DOI: 10.1038/nm.3887.
|
[38] |
ScappaticcioL, MaiorinoMI, MaioA, et al. Neutropenia in patients with hyperthyroidism: systematic review and meta-analysis[J]. Clin Endocrinol (Oxf), 2021,94(3):473-483. DOI: 10.1111/cen.14313.
|
[39] |
DrewW, WilsonDV, SapeyE. Inflammation and neutrophil immunosenescence in health and disease: targeted treatments to improve clinical outcomes in the elderly[J]. Exp Gerontol, 2018,105:70-77. DOI: 10.1016/j.exger.2017.12.020.
|
[40] |
邱雨璐, 刘牧, 王灵冰, 等. 中性粒细胞免疫衰老与老年病的相关性研究进展[J].中国老年学杂志,2019,39(8):2019-2023.DOI: 10.3969/j.issn.1005-9202.2019.08.072.
|
[41] |
SapeyE, GreenwoodH, WaltonG, et al. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence[J]. Blood, 2014,123(2):239-248. DOI: 10.1182/blood-2013-08-519520.
|
[42] |
SapeyE, PatelJM, GreenwoodHL, et al. Pulmonary infections in the elderly lead to impaired neutrophil targeting, which is improved by simvastatin[J]. Am J Respir Crit Care Med, 2017,196(10):1325-1336. DOI: 10.1164/rccm.201704-0814OC.
|
[43] |
PatelJM, ThickettDR, GaoF, et al. Statins for sepsis: distinguishing signal from the noise when designing clinical trials[J]. Am J Respir Crit Care Med, 2013,188(7):874. DOI: 10.1164/rccm.201302-0392LE.
|
[44] |
WangJ. Neutrophils in tissue injury and repair[J]. Cell Tissue Res, 2018,371(3):531-539. DOI: 10.1007/s00441-017-2785-7.
|
[45] |
JunJI, KimKH, LauLF. The matricellular protein CCN1 mediates neutrophil efferocytosis in cutaneous wound healing[J]. Nat Commun, 2015,6:7386. DOI: 10.1038/ncomms8386.
|
[46] |
BrubakerAL, RendonJL, RamirezL, et al. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age[J]. J Immunol, 2013,190(4):1746-1757. DOI: 10.4049/jimmunol.1201213.
|
[47] |
NguyenKT, SethAK, HongSJ, et al. Deficient cytokine expression and neutrophil oxidative burst contribute to impaired cutaneous wound healing in diabetic, biofilm-containing chronic wounds[J]. Wound Repair Regen, 2013,21(6):833-841. DOI: 10.1111/wrr.12109.
|