留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲基丙烯酸酐化明胶水凝胶在创面修复领域中的应用研究进展

丁能 付新新 吴海媚 朱鴷

丁能, 付新新, 吴海媚, 等. 甲基丙烯酸酐化明胶水凝胶在创面修复领域中的应用研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(11): 1096-1100. DOI: 10.3760/cma.j.cn501225-20220308-00056.
引用本文: 丁能, 付新新, 吴海媚, 等. 甲基丙烯酸酐化明胶水凝胶在创面修复领域中的应用研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(11): 1096-1100. DOI: 10.3760/cma.j.cn501225-20220308-00056.
Ding N,Fu XX,Wu HM,et al.Research progress of the application of methacrylic anhydride gelatin hydrogel in wound repair[J].Chin J Burns Wounds,2022,38(11):1096-1100.DOI: 10.3760/cma.j.cn501225-20220308-00056.
Citation: Ding N,Fu XX,Wu HM,et al.Research progress of the application of methacrylic anhydride gelatin hydrogel in wound repair[J].Chin J Burns Wounds,2022,38(11):1096-1100.DOI: 10.3760/cma.j.cn501225-20220308-00056.

甲基丙烯酸酐化明胶水凝胶在创面修复领域中的应用研究进展

doi: 10.3760/cma.j.cn501225-20220308-00056
基金项目: 

海军军医大学&上海理工大学军民融合成果孵化专项 2020-RZ04

详细信息
    通讯作者:

    朱鴷,Email:zhulie19811@smmu.edu.cn

Research progress of the application of methacrylic anhydride gelatin hydrogel in wound repair

Funds: 

Civil-Military Integration Achievement Incubation Special Fund of Naval Medical University & University of Shanghai for Science and Technology 2020-RZ04

More Information
  • 摘要: 创面修复是临床中常见难题,严重影响患者生活质量,也给社会带来沉重负担。基于水凝胶开发的多功能敷料在治疗急性和慢性创面中显示了较强的潜力。甲基丙烯酸酐化明胶(GelMA)水凝胶除具备良好的组织相容性、细胞黏附性和生物可降解性等优势外,还因成本低廉、反应条件温和、理化性质可调节、临床应用广泛等而备受关注。该文介绍了GelMA水凝胶的特征及其在创面修复领域中的应用研究进展,并对用于治疗创面的多功能GelMA水凝胶敷料的未来发展进行了展望。

     

  • [1] XuZ, HanS, GuZ, et al. Advances and impact of antioxidant hydrogel in chronic wound healing[J]. Adv Healthc Mater, 2020, 9(5): e1901502. DOI: 10.1002/adhm.201901502.
    [2] WilkinsonHN, HardmanMJ. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10(9): 200223. DOI: 10.1098/rsob.200223.
    [3] PrzekoraA. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: can we reconstruct functional skin tissue in vitro?[J]. Cells, 2020, 9(7):1622. DOI: 10.3390/cells9071622.
    [4] 罗高兴, 吴军. 现代功能材料促进皮肤创面修复[J]. 中华烧伤杂志, 2020, 36(12): 1113-1116. DOI: 10.3760/cma.j.cn501120-20201015-00436
    [5] FranceskoA, PetkovaP, TzanovT. Hydrogel dressings for advanced wound management[J]. Curr Med Chem, 2018, 25(41): 5782-5797. DOI: 10.2174/0929867324666170920161246.
    [6] Van Den Bulcke AI, BogdanovB, De RoozeN, et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels[J]. Biomacromolecules, 2000, 1(1): 31-38. DOI: 10.1021/bm990017d.
    [7] LiuY, Chan-ParkMB. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture[J]. Biomaterials, 2010, 31(6): 1158-1170. DOI: 10.1016/j.biomaterials.2009.10.040.
    [8] Van den SteenPE, DuboisB, NelissenI, et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9)[J]. Crit Rev Biochem Mol Biol, 2002, 37(6): 375-536. DOI: 10.1080/10409230290771546.
    [9] LiuY, LiZ, LiJ, et al. Stiffness-mediated mesenchymal stem cell fate decision in 3D-bioprinted hydrogels[J/OL]. Burns Trauma,2020,8:tkaa029[2022-07-31]. https://pubmed.ncbi.nlm.nih.gov/32733974/.DOI: 10.1093/burnst/tkaa029.
    [10] YueK, Trujillo-de SantiagoG, AlvarezMM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J]. Biomaterials, 2015, 73: 254-271. DOI: 10.1016/j.biomaterials.2015.08.045.
    [11] ChenYC, LinRZ, QiH, et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels[J]. Adv Funct Mater, 2012, 22(10): 2027-2039. DOI: 10.1002/adfm.201101662.
    [12] VlierbergheSV, CnuddeV, DubruelP, et al. Porous gelatin hydrogels: 1. Cryogenic formation and structure analysis[J]. Biomacromolecules, 2007, 8(2): 331-337. DOI: 10.1021/bm060684o.
    [13] DubruelP, UngerR, VlierbergheSV, et al. Porous gelatin hydrogels: 2. In vitro cell interaction study[J]. Biomacromolecules, 2007, 8(2): 338-344. DOI: 10.1021/bm0606869.
    [14] BoereKW, VisserJ, SeyednejadH, et al. Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs[J]. Acta Biomater, 2014, 10(6): 2602-2611. DOI: 10.1016/j.actbio.2014.02.041.
    [15] NguyenAH, McKinneyJ, MillerT, et al. Gelatin methacrylate microspheres for controlled growth factor release[J]. Acta Biomater, 2015, 13: 101-110. DOI: 10.1016/j.actbio.2014.11.028
    [16] DaikuaraLY, YueZ, SkropetaD, et al. In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering[J]. Acta Biomater, 2021, 123: 286-297. DOI: 10.1016/j.actbio.2021.01.021.
    [17] BornLJ, McLoughlinST, DuttaD, et al. Sustained released of bioactive mesenchymal stromal cell-derived extracellular vesicles from 3D-print ed gelatin methacrylate hydrogels[J]. J Biomed Mater Res A, 2022,110(6):1190-1198. DOI: 10.1002/jbm.a.37362.
    [18] HuP, YangQ, WangQ, et al. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration[J/OL]. Burns Trauma, 2019, 7: 38[2022-03-08].https://pubmed.ncbi.nlm.nih.gov/32640572/. DOI: 10.1186/s41038-019-0178-8.
    [19] ZhaoD, YuZ, LiY, et al. GelMA combined with sustained release of HUVECs derived exosomes for promoting cutaneous wound healing and facilitating skin regeneration[J]. J Mol Histol, 2020, 51(3): 251-263. DOI: 10.1007/s10735-020-09877-6.
    [20] GuanG, LvQ, LiuS, et al. 3D-bioprinted peptide coupling patches for wound healing[J]. Mater Today Bio, 2022, 13: 100188. DOI: 10.1016/j.mtbio.2021.100188.
    [21] SalehB, DhaliwalHK, Portillo-LaraR, et al. Local immunomodulation using an adhesive hydrogel loaded with miRNA-laden nanoparticles promotes wound healing[J]. Small, 2019, 15(36): e1902232. DOI: 10.1002/smll.201902232.
    [22] SchuurmanW, LevettPA, PotMW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs[J]. Macromol Biosci, 2013, 13(5): 551-561. DOI: 10.1002/mabi.201200471.
    [23] ChenCS, ZengF, XiaoX, et al. Three-dimensionally printed silk-sericin-based hydrogel scaffold: a promising visualized dressing material for real-time monitoring of wounds[J]. ACS Appl Mater Interfaces, 2018, 10(40): 33879-33890. DOI: 10.1021/acsami.8b10072.
    [24] KurianAG, SinghRK, PatelKD, et al. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics[J]. Bioact Mater, 2022, 8: 267-295. DOI: 10.1016/j.bioactmat.2021.06.027.
    [25] NuutilaK, SamandariM, EndoY, et al. In vivo printing of growth factor-eluting adhesive scaffolds improves wound healing[J]. Bioact Mater, 2022, 8: 296-308. DOI: 10.1016/j.bioactmat.2021.06.030.
    [26] QuW, WangZ, HuntC, et al. The effectiveness and safety of platelet-rich plasma for chronic wounds: a systematic review and meta-analysis[J]. Mayo Clin Proc, 2021, 96(9): 2407-2417. DOI: 10.1016/j.mayocp.2021.01.030.
    [27] QianZ, WangH, BaiY, et al. Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release[J]. ACS Appl Mater Interfaces, 2020, 12(50): 55659-55674. DOI: 10.1021/acsami.0c17142.
    [28] KimM, RheeJ K, ChoiH, et al. Passage-dependent accumulation of somatic mutations in mesenchymal stromal cells during in vitro culture revealed by whole genome sequencing[J]. Sci Rep, 2017, 7(1): 14508. DOI: 10.1038/s41598-017-15155-5.
    [29] YoonDS, LeeY, RyuHA, et al. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing[J]. Acta Biomater, 2016, 38: 59-68. DOI: 10.1016/j.actbio.2016.04.030.
    [30] ZhuJ, LiuZ, WangL, et al. Exosome mimetics-loaded hydrogel accelerates wound repair by transferring functional mitochondrial proteins[J]. Front Bioeng Biotechnol, 2022, 10: 866505. DOI: 10.3389/fbioe.2022.866505.
    [31] YuanM, LiuK, JiangT, et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing[J]. J Nanobiotechnology, 2022, 20(1): 147. DOI: 10.1186/s12951-022-01354-4.
    [32] HeJ, ShiM, LiangY, et al. Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds[J]. Chem Eng J, 2020, 394. DOI: 10.1016/j.cej.2020.124888.
    [33] LiuBC, WangY, MiaoY, et al. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin[J]. Biomaterials, 2018, 171: 83-96. DOI: 10.1016/j.biomaterials.2018.04.023.
    [34] LiuY, WangQ, LiuX, et al. Highly adhesive, stretchable and breathable gelatin methacryloyl-based nanofibrous hydrogels for wound dressings[J]. ACS Appl Bio Mater, 2022, 5(3): 1047-1056. DOI: 10.1021/acsabm.1c01087.
    [35] JahanI, GeorgeE, SaxenaN, et al. Silver-nanoparticle-entrapped soft GelMA gels as prospective scaffolds for wound healing[J]. ACS Appl Bio Mater, 2019, 2(5): 1802-1814. DOI: 10.1021/acsabm.8b00663.
    [36] AugustineR, ZahidAA, HasanA, et al. Cerium oxide nanoparticle-loaded gelatin methacryloyl hydrogel wound-healing patch with free radical scavenging activity[J]. ACS Biomater Sci Eng, 2021, 7(1): 279-290. DOI: 10.1021/acsbiomaterials.0c01138.
    [37] RajabiN, KharazihaM, EmadiR, et al. An adhesive and injectable nanocomposite hydrogel of thiolated gelatin/gelatin methacrylate/Laponite® as a potential surgical sealant[J]. J Colloid Interface Sci, 2020, 564: 155-169. DOI: 10.1016/j.jcis.2019.12.048.
    [38] RehmanSRU, AugustineR, ZahidAA, et al. Reduced graphene oxide incorporated GelMA hydrogel promotes angiogenesis for wound healing applications[J]. Int J Nanomedicine, 2019, 14: 9603-9617. DOI: 10.2147/IJN.S218120.
    [39] Velasco-RodriguezB, Diaz-VidalT, Rosales-RiveraLC, et al. Hybrid methacrylated gelatin and hyaluronic acid hydrogel scaffolds. Preparation and systematic characterization for prospective tissue engineering applications[J]. Int J Mol Sci, 2021, 22(13):6758. DOI: 10.3390/ijms22136758.
    [40] NazirF, AshrafI, IqbalM, et al. 6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: in vitro and in vivo studies[J]. Int J Biol Macromol, 2021, 185: 419-433. DOI: 10.1016/j.ijbiomac.2021.06.112.
    [41] KlotzBJ, GawlittaD, RosenbergA, et al. Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair[J]. Trends Biotechnol, 2016, 34(5): 394-407. DOI: 10.1016/j.tibtech.2016.01.002.
    [42] GrollJ, BolandT, BlunkT, et al. Biofabrication: reappraising the definition of an evolving field[J]. Biofabrication, 2016, 8(1): 013001. DOI: 10.1088/1758-5090/8/1/013001
    [43] ShiX, OstrovidovS, ZhaoY, et al. Microfluidic spinning of cell-responsive grooved microfibers[J]. Adv Funct Mater, 2015, 25(15): 2250-2259. DOI: 10.1002/adfm.201404531.
    [44] NicholJW, KoshyST, BaeH, et al. Cell-laden microengineered gelatin methacrylate hydrogels[J]. Biomaterials, 2010, 31(21): 5536-5544. DOI: 10.1016/j.biomaterials.2010.03.064.
    [45] ChenX, YueZ, WinbergPC, et al. 3D bioprinting dermal-like structures using species-specific ulvan[J]. Biomater Sci, 2021, 9(7): 2424-2438. DOI: 10.1039/d0bm01784a.
  • 加载中
计量
  • 文章访问数:  466
  • HTML全文浏览量:  38
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08

目录

    /

    返回文章
    返回