留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微循环障碍研究进展对烧伤休克和烧伤脓毒症休克治疗的启发

郇京宁 张利军

郇京宁, 张利军. 微循环障碍研究进展对烧伤休克和烧伤脓毒症休克治疗的启发[J]. 中华烧伤与创面修复杂志, 2022, 38(5): 401-407. DOI: 10.3760/cma.j.cn501225-20220323-00082.
引用本文: 郇京宁, 张利军. 微循环障碍研究进展对烧伤休克和烧伤脓毒症休克治疗的启发[J]. 中华烧伤与创面修复杂志, 2022, 38(5): 401-407. DOI: 10.3760/cma.j.cn501225-20220323-00082.
Huan JN,Zhang LJ.Inspiration from the research advances in microcirculatory dysfunction to the treatment of burn shock and burn septic shock[J].Chin J Burns Wounds,2022,38(5):401-407.DOI: 10.3760/cma.j.cn501225-20220323-00082.
Citation: Huan JN,Zhang LJ.Inspiration from the research advances in microcirculatory dysfunction to the treatment of burn shock and burn septic shock[J].Chin J Burns Wounds,2022,38(5):401-407.DOI: 10.3760/cma.j.cn501225-20220323-00082.

微循环障碍研究进展对烧伤休克和烧伤脓毒症休克治疗的启发

doi: 10.3760/cma.j.cn501225-20220323-00082
基金项目: 

国家自然科学基金面上项目 81772077

广东省自然科学基金面上项目 2019A1515011233

详细信息
    通讯作者:

    郇京宁,Email:jnhuan@sina.com

Inspiration from the research advances in microcirculatory dysfunction to the treatment of burn shock and burn septic shock

Funds: 

General Program of National Natural Science Foundation of China 81772077

General Program of Natural Science Foundation of Guangdong Province of China 2019A1515011233

More Information
  • 摘要: 微循环障碍是休克重要的病理生理变化。近10年来,许多有关微循环障碍机制的研究都涉及血管内皮细胞糖萼损害、大循环-微循环失偶联、血管低反应性以及微循环监测等方面。据此,该文讨论如何将这些研究结果应用于烧伤患者,目的是提醒临床医师在烧伤休克和烧伤脓毒症休克治疗过程中关注微循环改善情况,维持血流动力学的协调性。此外,随着精准、可靠的微循环监测技术的发展,有必要开展多中心的临床研究,以揭示大循环和微循环指标相结合的目标导向性休克复苏方案的临床意义。

     

  • 参考文献(50)

    [1] GuvenG,HiltyMP,InceC.Microcirculation: physiology, pathophysiology, and clinical application[J].Blood Purif,2020,49(1/2):143-150.DOI: 10.1159/000503775.
    [2] PillingerNL,KamP.Endothelial glycocalyx: basic science and clinical implications[J].Anaesth Intensive Care,2017,45(3):295-307.DOI: 10.1177/0310057X1704500305.
    [3] IbaT,LevyJH.Derangement of the endothelial glycocalyx in sepsis[J].J Thromb Haemost,2019,17(2):283-294.DOI: 10.1111/jth.14371.
    [4] UchimidoR,SchmidtEP,ShapiroNI.The glycocalyx: a novel diagnostic and therapeutic target in sepsis[J].Crit Care,2019,23(1):16.DOI: 10.1186/s13054-018-2292-6.
    [5] JohanssonPI,HenriksenHH,StensballeJ,et al.Traumatic endotheliopathy: a prospective observational study of 424 severely injured patients[J].Ann Surg,2017,265(3):597-603.DOI: 10.1097/SLA.0000000000001751.
    [6] WellingH,HenriksenHH,Gonzalez-RodriguezER,et al.Endothelial glycocalyx shedding in patients with burns[J].Burns,2020,46(2):386-393.DOI: 10.1016/j.burns.2019.05.009.
    [7] BelousovieneE,KiudulaiteI,PilvinisV,et al.Links between endothelial glycocalyx changes and microcirculatory parameters in septic patients[J].Life (Basel),2021,11(8):790.DOI: 10.3390/life11080790.
    [8] RovasA,SeidelLM,VinkH,et al.Association of sublingual microcirculation parameters and endothelial glycocalyx dimensions in resuscitated sepsis[J].Crit Care,2019,23(1):260.DOI: 10.1186/s13054-019-2542-2.
    [9] AldecoaC,LlauJV,NuvialsX,et al.Role of albumin in the preservation of endothelial glycocalyx integrity and the microcirculation: a review[J].Ann Intensive Care,2020,10(1):85.DOI: 10.1186/s13613-020-00697-1.
    [10] SongJW,ZulloJA,LiverisD,et al.Therapeutic restoration of endothelial glycocalyx in sepsis[J].J Pharmacol Exp Ther,2017,361(1):115-121.DOI: 10.1124/jpet.116.239509.
    [11] ZhangC,GuoF,ChangM,et al.Exosome-delivered syndecan-1 rescues acute lung injury via a FAK/p190RhoGAP/RhoA/ROCK/NF-κB signaling axis and glycocalyx enhancement[J].Exp Cell Res,2019,384(1):111596.DOI: 10.1016/j.yexcr.2019.111596.
    [12] AdamsonRH,ClarkJF,RadevaM,et al.Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect[J].Am J Physiol Heart Circ Physiol,2014,306(7):H1011-1017.DOI: 10.1152/ajpheart.00829.2013.
    [13] ChappellD,Hofmann-KieferK,JacobM,et al.TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin[J].Basic Res Cardiol,2009,104(1):78-89.DOI: 10.1007/s00395-008-0749-5.
    [14] LiT,LiuX,ZhaoZ,et al.Sulodexide recovers endothelial function through reconstructing glycocalyx in the balloon-injury rat carotid artery model[J].Oncotarget,2017,8(53):91350-91361.DOI: 10.18632/oncotarget.20518.
    [15] LukerJN,Vigiola CruzM,CarneyBC,et al.Shedding of the endothelial glycocalyx is quantitatively proportional to burn injury severity[J].Ann Burns Fire Disasters,2018,31(1):17-22.
    [16] TapkingC,HernekampJF,HorterJ,et al.Influence of burn severity on endothelial glycocalyx shedding following thermal trauma: a prospective observational study[J].Burns,2021,47(3):621-627.DOI: 10.1016/j.burns.2020.07.021.
    [17] MilfordEM,ReadeMC.Resuscitation fluid choices to preserve the endothelial glycocalyx[J].Crit Care,2019,23(1):77.DOI: 10.1186/s13054-019-2369-x.
    [18] HaririG,JoffreJ,DeryckereS,et al.Albumin infusion improves endothelial function in septic shock patients: a pilot study[J].Intensive Care Med,2018,44(5):669-671.DOI: 10.1007/s00134-018-5075-2.
    [19] WangL,HuangX,KongG,et al.Ulinastatin attenuates pulmonary endothelial glycocalyx damage and inhibits endothelial heparanase activity in LPS-induced ARDS[J].Biochem Biophys Res Commun,2016,478(2):669-675.DOI: 10.1016/j.bbrc.2016.08.005.
    [20] ZhangD,QiBY,ZhuWW,et al.Crocin alleviates lipopolysaccharide-induced acute respiratory distress syndrome by protecting against glycocalyx damage and suppressing inflammatory signaling pathways[J].Inflamm Res,2020,69(3):267-278.DOI: 10.1007/s00011-019-01314-z.
    [21] HuangL,ZhangX,MaX,et al.Berberine alleviates endothelial glycocalyx degradation and promotes glycocalyx restoration in LPS-induced ARDS[J].Int Immunopharmacol,2018,65:96-107.DOI: 10.1016/j.intimp.2018.10.001.
    [22] InceC.Hemodynamic coherence and the rationale for monitoring the microcirculation[J].Crit Care,2015,19Suppl 3(Suppl 3):S8.DOI: 10.1186/cc14726.
    [23] De BackerD,DonadelloK,SakrY,et al.Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome[J].Crit Care Med,2013,41(3):791-799.DOI: 10.1097/CCM.0b013e3182742e8b.
    [24] DubinA,PozoMO,CasabellaCA,et al.Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study[J].Crit Care,2009,13(3):R92.DOI: 10.1186/cc7922.
    [25] Haase-FielitzA,HaaseM,BellomoR,et al.Perioperative hemodynamic instability and fluid overload are associated with increasing acute kidney injury severity and worse outcome after cardiac surgery[J].Blood Purif,2017,43(4):298-308.DOI: 10.1159/000455061.
    [26] HernekampJF,NeubrechF,CordtsT,et al.Influences of macrohemodynamic conditions on systemic microhemodynamic changes in burns[J].Ann Plast Surg,2016,77(5):523-528.DOI: 10.1097/SAP.0000000000000868.
    [27] SoussiS,LegrandM.Hemodynamic coherence in patients with burns[J].Best Pract Res Clin Anaesthesiol,2016,30(4):437-443.DOI: 10.1016/j.bpa.2016.10.004.
    [28] 郇京宁,黄晓琴.控制大面积烧伤患者过度液体复苏预防并发症[J].中华烧伤与创面修复杂志,2022,38(1):13-20.DOI: 10.3760/cma.j.cn501120-20210813-00281.
    [29] LevyB,FritzC,TahonE,et al.Vasoplegia treatments: the past, the present, and the future[J].Crit Care,2018,22(1):52.DOI: 10.1186/s13054-018-1967-3.
    [30] PotterEK,HodgsonL,Creagh-BrownB,et al.Manipulating the microcirculation in sepsis-the impact of vasoactive medications on microcirculatory blood flow: a systematic review[J].Shock,2019,52(1):5-12.DOI: 10.1097/SHK.0000000000001239.
    [31] MirandaM,BalariniM,CaixetaD,et al.Microcirculatory dysfunction in sepsis: pathophysiology, clinical monitoring, and potential therapies[J].Am J Physiol Heart Circ Physiol,2016,311(1):H24-35.DOI: 10.1152/ajpheart.00034.2016.
    [32] InceC,De BackerD,MayeuxPR.Microvascular dysfunction in the critically ill[J].Crit Care Clin,2020,36(2):323-331.DOI: 10.1016/j.ccc.2019.11.003.
    [33] GravesKK,FaraklasI,CochranA.Identification of risk factors associated with critical illness related corticosteroid insufficiency in burn patients[J].J Burn Care Res,2012,33(3):330-335.DOI: 10.1097/BCR.0b013e318239cc3d.
    [34] BurgdorffAM,BucherM,SchumannJ.Vasoplegia in patients with sepsis and septic shock: pathways and mechanisms[J].J Int Med Res,2018,46(4):1303-1310.DOI: 10.1177/0300060517743836.
    [35] HosseinianL,WeinerM,LevinMA,et al.Methylene blue: magic bullet for vasoplegia?[J].Anesth Analg,2016,122(1):194-201.DOI: 10.1213/ANE.0000000000001045.
    [36] NantaisJ,DumbartonTC,FarahN,et al.Impact of methylene blue in addition to norepinephrine on the intestinal microcirculation in experimental septic shock[J].Clin Hemorheol Microcirc,2014,58(1):97-105.DOI: 10.3233/CH-141874.
    [37] ChurchJT,PoslusznyJA,HemmilaM,et al.Methylene blue for burn-induced vasoplegia: case report and review of literature[J].J Burn Care Res,2015,36(2):e107-111.DOI: 10.1097/BCR.0000000000000134.
    [38] RheeC,MurphyMV,LiL,et al.Lactate testing in suspected sepsis: trends and predictors of failure to measure levels[J].Crit Care Med,2015,43(8):1669-1676.DOI: 10.1097/CCM.0000000000001087.
    [39] HolderAL,GuptaN,LulajE,et al.Predictors of early progression to severe sepsis or shock among emergency department patients with nonsevere sepsis[J].Int J Emerg Med,2016,9(1):10.DOI: 10.1186/s12245-016-0106-7.
    [40] RonfléR,LefebvreL,DuclosG,et al.Venous-to-arterial carbon dioxide partial pressure difference: predictor of septic patient prognosis depending on central venous oxygen saturation[J].Shock,2020,53(6):710-716.DOI: 10.1097/SHK.0000000000001442.
    [41] Ait-OufellaH,LemoinneS,BoellePY,et al.Mottling score predicts survival in septic shock[J].Intensive Care Med,2011,37(5):801-807.DOI: 10.1007/s00134-011-2163-y.
    [42] Ait-OufellaH,BigeN,BoellePY,et al.Capillary refill time exploration during septic shock[J].Intensive Care Med,2014,40(7):958-964.DOI: 10.1007/s00134-014-3326-4.
    [43] HernándezG,Ospina-TascónGA,DamianiLP,et al.Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial[J].JAMA,2019,321(7):654-664.DOI: 10.1001/jama.2019.0071.
    [44] SekinoM,FunaokaH,SatoS,et al.Association between macroscopic tongue ischemia and enterocyte injury and poor outcome in patients with septic shock: a preliminary observational study[J].Shock,2018,50(5):530-537.DOI: 10.1097/SHK.0000000000001122.
    [45] 王猛. 舌下微循环在脓毒性休克治疗与预后评估中的价值[J]. 国际儿科学杂志,2019,46(2):101-104. DOI: 10.3760/cma.j.issn.1673-4408.2019.02.007.
    [46] RehnM, ChewMS, OlkkolaKT, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock in adults 2021-endorsement by the Scandinavian society of anaesthesiology and intensive care medicine[J]. Acta Anaesthesiol Scand, 2022,66(5):634-635. DOI: 10.1111/aas.14045.
    [47] RovasA,LukaszAH,VinkH,et al.Bedside analysis of the sublingual microvascular glycocalyx in the emergency room and intensive care unit-the GlycoNurse study[J].Scand J Trauma Resusc Emerg Med,2018,26(1):16.DOI: 10.1186/s13049-018-0483-4.
    [48] 张庆富.微循环治疗技术在烧伤临床中的应用[J/CD].中华损伤与修复杂志:电子版,2017,12(2):90-93.DOI: 10.3877/cma.j.issn.1673-9450.2017.02.003.
    [49] 朱峰,郑兴锋,伍国胜.对成人烧伤休克与复苏的再思考[J].中华医学杂志,2020,100(18):1372-1375.DOI: 10.3760/cma.j.cn112137-20191129-02601.
    [50] BelaunzaranM,RaslanS,AliA,et al.Utilization and efficacy of resuscitation endpoints in trauma and burn patients: a review article[J].Am Surg,2022,88(1):10-19.DOI: 10.1177/00031348211060424.
  • 脱细胞真皮基质(ADM)重症监护病房(ICU)动脉血氧分压(PaO2
    丙氨酸转氨酶(ALT)白细胞介素(IL)磷酸盐缓冲液(PBS)
    急性呼吸窘迫综合征(ARDS)角质形成细胞(KC)反转录-聚合酶链反应(RT-PCR)
    天冬氨酸转氨酶(AST)半数致死烧伤面积(LA50)全身炎症反应综合征(SIRS)
    集落形成单位(CFU)内毒素/脂多糖(LPS)超氧化物歧化酶(SOD)
    细胞外基质(ECM)丝裂原活化蛋白激酶(MAPK)动脉血氧饱和度(SaO2
    表皮生长因子(EGF)最低抑菌浓度(MIC)体表总面积(TBSA)
    酶联免疫吸附测定(ELISA)多器官功能障碍综合征(MODS)转化生长因子(TGF)
    成纤维细胞(Fb)多器官功能衰竭(MOF)辅助性T淋巴细胞(Th)
    成纤维细胞生长因子(FGF)一氧化氮合酶(NOS)肿瘤坏死因子(TNF)
    3-磷酸甘油醛脱氢酶(GAPDH)负压伤口疗法(NPWT)血管内皮生长因子(VEGF)
    苏木精-伊红(HE)动脉血二氧化碳分压(PaCO2负压封闭引流(VSD)
    下载: 导出CSV
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  2555
  • HTML全文浏览量:  61
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23

目录

    /

    返回文章
    返回