Research on the development of genetically engineered xenogenic porcine skin and its application in the treatment of burn wounds
-
摘要: 近年来,异体皮来源极度匮乏,给大面积危重烧伤患者的救治带来了极大挑战。而异种猪皮虽然结构功能与人皮肤相似,但受免疫排斥反应、猪内源性反转录病毒感染等因素影响,其临床应用受到限制。随着基因编辑技术的发展,特别是成簇规律间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9系统的出现,使一次实施多位点靶基因编辑成为可能,为异种猪皮治疗烧伤创面带来了广阔的应用前景。该文着重对异种猪皮移植治疗临床烧伤创面的进展、存在问题、基因修饰/编辑策略及其应用研究进行讨论。Abstract: In the recent years, the shortage of allo-skin sources has resulted in great challenges for salvage of patients with large area severe burns. Although being similar to human skin in construction and function, the clinical application of xenogenic porcine skin in burn wound management is limited due to factors including immuno-rejection, porcine endogenous retroviruses infection, etc. With the development of gene editing technology, especially the emerge of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein-9 system, multiple target genes could be possibly edited at the same time, which will bring broad prospect for the application of xenogenic porcine skin in the treatment of burn wounds. The paper mainly discusses the development, the existed barrier, the strategies of gene modification/editing, and the applications and research of xenogenic porcine skin xenografts in the clinical treatment of burn wound.
-
Key words:
- Burns /
- Biological dressings /
- Transplantation, heterologous /
- Gene editing /
- Porcine skin /
- Wound repair
-
参考文献
(32) [1] 柴家科, 段红杰, 尹会男. 烧伤创面愈合[M]//柴家科. 实用烧伤外科学. 北京:人民军医出版社, 2014: 197-217. [2] KalsiR, MessnerF, BrandacherG. Skin xenotransplantation: technological advances and future directions[J]. Curr Opin Organ Transplant, 2020,25(5):464-476. DOI: 10.1097/MOT.0000000000000798. [3] ChiuT, BurdA. "Xenograft" dressing in the treatment of burns[J]. Clin Dermatol, 2005,23(4):419-423. DOI: 10.1016/j.clindermatol.2004.07.027. [4] DebeerS, Le LuduecJB, KaiserlianD, et al. Comparative histology and immunohistochemistry of porcine versus human skin[J]. Eur J Dermatol, 2013,23(4):456-466. DOI: 10.1684/ejd.2013.2060. [5] YamamotoT, IwaseH, KingTW, et al. Skin xenotransplantation: historical review and clinical potential[J]. Burns, 2018,44(7):1738-1749. DOI: 10.1016/j.burns.2018.02.029. [6] KitalaD, Klama-BaryłaA, ŁabuśW, et al. Porcine transgenic, acellular material as an alternative for human skin[J]. Transplant Proc, 2020,52(7):2218-2222. DOI: 10.1016/j.transproceed.2020.01.125. [7] FishmanJA. Infectious disease risks in xenotransplantation[J]. Am J Transplant, 2018,18(8):1857-1864. DOI: 10.1111/ajt.14725. [8] FishmanJA. Prevention of infection in xenotransplantation: designated pathogen-free swine in the safety equation[J]. Xenotransplantation, 2020,27(3):e12595. DOI: 10.1111/xen.12595. [9] CooperD, HaraH, IwaseH, et al. Justification of specific genetic modifications in pigs for clinical organ xenotransplantation[J]. Xenotransplantation, 2019,26(4):e12516. DOI: 10.1111/xen.12516. [10] HermansMH. Porcine xenografts vs. (cryopreserved) allografts in the management of partial thickness burns: is there a clinical difference?[J]. Burns, 2014,40(3):408-415. DOI: 10.1016/j.burns.2013.08.020. [11] SunT, HanY, ChaiJ, et al. Transplantation of microskin autografts with overlaid selectively decellularized split-thickness porcine skin in the repair of deep burn wounds[J]. J Burn Care Res, 2011,32(3):e67-e73. DOI: 10.1097/BCR.0b013e318217f8e2. [12] Guttman-YasskyE, ZhouL, KruegerJG. The skin as an immune organ: tolerance versus effector responses and applications to food allergy and hypersensitivity reactions[J]. J Allergy Clin Immunol, 2019,144(2):362-374. DOI: 10.1016/j.jaci.2019.03.021. [13] Matter-ReissmannUB, ForteP, SchneiderMK, et al. Xenogeneic human NK cytotoxicity against porcine endothelial cells is perforin/granzyme B dependent and not inhibited by Bcl-2 overexpression[J]. Xenotransplantation, 2002,9(5):325-337. DOI: 10.1034/j.1399-3089.2002.01074.x. [14] HaraH, WittW, CrossleyT, et al. Human dominant-negative class Ⅱ transactivator transgenic pigs-effect on the human anti-pig T-cell immune response and immune status[J]. Immunology, 2013,140(1):39-46. DOI: 10.1111/imm.12107. [15] CooperDK, EzzelarabMB, HaraH, et al. The pathobiology of pig-to-primate xenotransplantation: a historical review[J]. Xenotransplantation, 2016,23(2):83-105. DOI: 10.1111/xen.12219. [16] NiuD, MaX, YuanT, et al. Porcine genome engineering for xenotransplantation[J]. Adv Drug Deliv Rev, 2021,168:229-245. DOI: 10.1016/j.addr.2020.04.001. [17] LuT, YangB, WangR, et al. Xenotransplantation: current status in preclinical research[J]. Front Immunol, 2019,10:3060. DOI: 10.3389/fimmu.2019.03060. [18] WrightAV, NuñezJK, DoudnaJA. Biology and applications of CRISPR systems: harnessing Nature's toolbox for genome engineering[J]. Cell, 2016,164(1/2):29-44. DOI: 10.1016/j.cell.2015.12.035. [19] Kimsa-DudekM, Strzalka-MrozikB, KimsaMW, et al. Screening pigs for xenotransplantation: expression of porcine endogenous retroviruses in transgenic pig skin[J]. Transgenic Res, 2015,24(3):529-536. DOI: 10.1007/s11248-015-9871-y. [20] Kotz Deborah University of maryland school of medicine faculty scientists and clinicians perform historic first successful transplant of porcine heart into adult human with end-stage heart disease 2022-01-10 2022-04-19 https://www.medschool.umaryland.edu/news/2022/University-of-Maryland-School-of-Medicine-Faculty-Scientists-and-Clinicians-Perform-Historic-First-Successful-Transplant-of-Porcine-Heart-into-Adult-Human-with-End-Stage-Heart-Disease.html KotzDeborah.University of maryland school of medicine faculty scientists and clinicians perform historic first successful transplant of porcine heart into adult human with end-stage heart disease[EB/OL]. (2022-01-10)[2022-04-19]. https://www.medschool.umaryland.edu/news/2022/University-of-Maryland-School-of-Medicine-Faculty-Scientists-and-Clinicians-Perform-Historic-First-Successful-Transplant-of-Porcine-Heart-into-Adult-Human-with-End-Stage-Heart-Disease.html.
[21] IwaseH, KleinEC, CooperDK. Physiologic aspects of pig kidney transplantation in nonhuman primates[J]. Comp Med, 2018,68(5):332-340. DOI: 10.30802/AALAS-CM-17-000117. [22] WeinerJ, YamadaK, IshikawaY, et al. Prolonged survival of GalT-KO swine skin on baboons[J]. Xenotransplantation, 2010,17(2):147-152. DOI: 10.1111/j.1399-3089.2010.00576.x. [23] AlbrittonA, LeonardDA, Leto BaroneA, et al. Lack of cross-sensitization between α-1,3-galactosyltransferase knockout porcine and allogeneic skin grafts permits serial grafting[J]. Transplantation, 2014,97(12):1209-1215. DOI: 10.1097/TP.0000000000000093. [24] LeonardDA, MallardC, AlbrittonA, et al. Skin grafts from genetically modified α-1,3-galactosyltransferase knockout miniature swine: a functional equivalent to allografts[J]. Burns, 2017,43(8):1717-1724. DOI: 10.1016/j.burns.2017.04.026. [25] HolzerP, AdkinsJ, MoultonK, et al. Vital, porcine, gal-knockout skin transplants provide efficacious temporary closure of full-thickness wounds: good laboratory practice-compliant studies in nonhuman primates[J]. J Burn Care Res, 2020,41(2):229-240. DOI: 10.1093/jbcr/irz124. [26] FujitaT, MachidaK, MatsumotoY, et al. Cynomolgus monkey did not hyperacutely reject skin xenograft of N-acetylglucosaminyltransferase Ⅲ gene transgenic pig[J]. Transplant Proc, 2003,35(1):518. DOI: 10.1016/s0041-1345(02)03823-x. [27] FujitaT, MiyagawaS, EzoeK, et al. Skin graft of double transgenic pigs of N-acetylglucosaminyltransferase Ⅲ (GnT-Ⅲ) and DAF (CD55) genes survived in cynomolgus monkey for 31 days[J]. Transpl Immunol, 2004,13(4):259-264. DOI: 10.1016/j.trim.2004.08.001. [28] TenaAA, SachsDH, MallardC, et al. Prolonged survival of pig skin on baboons after administration of pig cells expressing human CD47[J]. Transplantation, 2017,101(2):316-321. DOI: 10.1097/TP.0000000000001267. [29] 程飚, 付小兵. 微环境控制是实现创面完美修复的必由之路[J].中华烧伤杂志,2020,36(11):1003-1008. DOI: 10.3760/cma.j.cn501120-20201009-00429. [30] KatoT, KhanhVC, SatoK, et al. SDF-1 improves wound healing ability of glucocorticoid-treated adipose tissue-derived mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2017,493(2):1010-1017. DOI: 10.1016/j.bbrc.2017.09.100. [31] BarkerJC, BarkerAD, BillsJ, et al. Genome editing of mouse fibroblasts by homologous recombination for sustained secretion of PDGF-B and augmentation of wound healing[J]. Plast Reconstr Surg, 2014,134(3):389e-401e. DOI: 10.1097/PRS.0000000000000427. [32] Massachusetts General Hospital First application of genetically modified, live-cell, pig skin to a human wound 2019-10-11 2022-04-19 https://medicalxpress.com/news/2019-10-application-genetically-live-cell-pig-skin.html Massachusetts General Hospital. First application of genetically modified, live-cell, pig skin to a human wound[EB/OL]. (2019-10-11)[2022-04-19]. https://medicalxpress.com/news/2019-10-application-genetically-live-cell-pig-skin.html.