留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物材料促进创面血管化的研究进展

陈良龙 于盛祥 马军 高艳彬 杨磊

陈良龙, 于盛祥, 马军, 等. 生物材料促进创面血管化的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(4): 381-385. DOI: 10.3760/cma.j.cn501225-20220626-00261.
引用本文: 陈良龙, 于盛祥, 马军, 等. 生物材料促进创面血管化的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(4): 381-385. DOI: 10.3760/cma.j.cn501225-20220626-00261.
Chen LL,Yu SX,Ma J,et al.Research progress of biomaterials in promoting wound vascularization[J].Chin J Burns Wounds,2023,39(4):381-385.DOI: 10.3760/cma.j.cn501225-20220626-00261.
Citation: Chen LL,Yu SX,Ma J,et al.Research progress of biomaterials in promoting wound vascularization[J].Chin J Burns Wounds,2023,39(4):381-385.DOI: 10.3760/cma.j.cn501225-20220626-00261.

生物材料促进创面血管化的研究进展

doi: 10.3760/cma.j.cn501225-20220626-00261
基金项目: 

广东省自然科学基金 2020A151501108

广东省重点领域研发计划项目 2020B1111150001

广东省省级科技计划项目 2018KJYZ005

西藏自治区自然科学基金 XZ2017ZR-ZY021

详细信息
    通讯作者:

    杨磊,Email:yuanyang@smu.edu.cn

Research progress of biomaterials in promoting wound vascularization

Funds: 

Guangdong Natural Science Foundation of China 2020A151501108

Key Field Research and Development Program of Guangdong Province of China 2020B1111150001

Provincial Science and Technology Project of Guangdong Province of China 2018KJYZ005

Natural Science Foundation of Tibet Autonomous Region of China XZ2017ZR-ZY021

More Information
  • 摘要: 快速、良好的促血管化目前仍然是创面修复生物材料研发面临的巨大挑战。目前研究表明创面血管化与生物材料的孔隙、成分、通道等密切相关。近年来,虽然新型医用功能材料的研发取得了突飞猛进的发展,其在重建皮肤屏障功能、调控创面微环境、抗菌消炎等方面取得可喜成果,但仍未解决创面快速血管化难题。该文介绍了创面血管化进程、生物材料促进创面血管化的策略、基于三维打印技术构建促进创面血管化的生物材料、纳米技术对创面血管化的影响,以期为未来快速血管化创面修复材料的研发提供新的启示。

     

  • [1] MiricescuD,BadoiuSC,ⅡStanescu-Spinu,et al.Growth factors, reactive oxygen species, and metformin-promoters of the wound healing process in burns?[J].Int J Mol Sci,2021,22(17):9512. DOI: 10.3390/ijms22179512.
    [2] WuM,LuZ,WuK,et al.Recent advances in the development of nitric oxide-releasing biomaterials and their application potentials in chronic wound healing[J].J Mater Chem B,2021,9(35):7063-7075.DOI: 10.1039/d1tb00847a.
    [3] ShahinH,ElmasryM,SteinvallI,et al.Vascularization is the next challenge for skin tissue engineering as a solution for burn management[J/OL].Burns Trauma,2020,8:tkaa022[2022-06-26].https://pubmed.ncbi.nlm.nih.gov/32766342/.DOI: 10.1093/burnst/tkaa022.
    [4] Masson-MeyersDS,TayebiL.Vascularization strategies in tissue engineering approaches for soft tissue repair[J].J Tissue Eng Regen Med,2021,15(9):747-762.DOI: 10.1002/term.3225.
    [5] WangY,FanY,LiuH.Macrophage polarization in response to biomaterials for vascularization[J].Ann Biomed Eng,2021,49(9):1992-2005.DOI: 10.1007/s10439-021-02832-w.
    [6] OmorphosNP,GaoC,TanSS,et al.Understanding angiogenesis and the role of angiogenic growth factors in the vascularisation of engineered tissues[J].Mol Biol Rep,2021,48(1):941-950.DOI: 10.1007/s11033-020-06108-9.
    [7] MarzianoC,GenetG,HirschiKK.Vascular endothelial cell specification in health and disease[J].Angiogenesis,2021,24(2):213-236.DOI: 10.1007/s10456-021-09785-7.
    [8] GonçalvesRC,BanfiA,OliveiraMB,et al.Strategies for re-vascularization and promotion of angiogenesis in trauma and disease[J].Biomaterials,2021,269:120628.DOI: 10.1016/j.biomaterials.2020.120628.
    [9] ChenL,LiZ,ZhengY,et al.3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization[J].Bioact Mater,2022,10:236-246.DOI: 10.1016/j.bioactmat.2021.09.008.
    [10] MinorAJ,CoulombeK.Engineering a collagen matrix for cell-instructive regenerative angiogenesis[J].J Biomed Mater Res B Appl Biomater,2020,108(6):2407-2416.DOI: 10.1002/jbm.b.34573.
    [11] NiuY,StadlerFJ,FangJ,et al.Hyaluronic acid-functionalized poly-lactic acid (PLA) microfibers regulate vascular endothelial cell proliferation and phenotypic shape expression[J].Colloids Surf B Biointerfaces,2021,206:111970.DOI: 10.1016/j.colsurfb.2021.111970.
    [12] GuoP,DuP,ZhaoP,et al.Regulating the mechanics of silk fibroin scaffolds promotes wound vascularization[J].Biochem Biophys Res Commun,2021,574:78-84.DOI: 10.1016/j.bbrc.2021.08.026.
    [13] CzerwinskiM,SpenceJR.Hacking the matrix[J].Cell Stem Cell,2017,20(1):9-10.DOI: 10.1016/j.stem.2016.12.010.
    [14] RahimnejadM,Nasrollahi BoroujeniN,JahangiriS,et al.Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering[J].Nanomicro Lett,2021,13(1):182.DOI: 10.1007/s40820-021-00697-1.
    [15] YuR,ZhangH,GuoB.Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering[J].Nanomicro Lett,2021,14(1):1.DOI: 10.1007/s40820-021-00751-y.
    [16] 谭荣伟,刘曦,陈滢滢,等.不同三维多孔结构对人工真皮血管化速率影响的实验研究[J].中华烧伤杂志,2021,37(10):959-969.DOI: 10.3760/cma.j.cn501120-20200715-00347.
    [17] MehdizadehH,SumoS,BayrakES,et al.Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds[J].Biomaterials,2013,34(12):2875-2887.DOI: 10.1016/j.biomaterials.2012.12.047.
    [18] HernandezJL,WoodrowKA.Medical applications of porous biomaterials: features of porosity and tissue-specific implications for biocompatibility[J].Adv Healthc Mater,2022,11(9):e2102087.DOI: 10.1002/adhm.202102087.
    [19] GongT,ZhaoK,LiuX,et al.A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization[J].Small,2016,12(41):5769-5778.DOI: 10.1002/smll.201601503.
    [20] LiJ,ZhangT,PanM,et al.Nanofiber/hydrogel core-shell scaffolds with three-dimensional multilayer patterned structure for accelerating diabetic wound healing[J].J Nanobiotechnology,2022,20(1):28.DOI: 10.1186/s12951-021-01208-5.
    [21] LiJ,LiuX,TaoW,et al.Micropatterned composite membrane guides oriented cell growth and vascularization for accelerating wound healing[J].Regen Biomater,2023,10:rbac108.DOI: 10.1093/rb/rbac108.
    [22] KasetsirikuS,KetpunD,ChuahYJ,et al.Surface creasing-induced micropatterned gelma using heating-hydration fabrication for effective vascularization[J].Tissue Eng Regen Med,2021,18(5):759-773.DOI: 10.1007/s13770-021-00345-0.
    [23] GaoJ,YuX,WangX,et al.Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine[J].Engineering,2022,13(6):31-45. DOI: 10.1016/j.eng.2021.11.025.
    [24] WangY,KankalaRK,OuC,et al.Advances in hydrogel-based vascularized tissues for tissue repair and drug screening[J].Bioact Mater,2022,9:198-220.DOI: 10.1016/j.bioactmat.2021.07.005.
    [25] DongL,YangY,LiuZ.3D printing of biomimetic vasculature for tissue regeneration[J]. Materials Horizons,2019,6(6):1197-1206. DOI: 10.1039/C9MH00174C.
    [26] FengC,ZhangW,DengC,et al.3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration[J].Adv Sci (Weinh),2017,4(12):1700401.DOI: 10.1002/advs.201700401.
    [27] SuH,LiQ,LiD,et al.A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds via combination of 3D printing and stimuli-responsive hydrogels[J].Mater Horiz,2022,9(9):2393-2407.DOI: 10.1039/d2mh00314g.
    [28] XiaP,LuoY.Vascularization in tissue engineering: the architecture cues of pores in scaffolds[J].J Biomed Mater Res B Appl Biomater,2022,110(5):1206-1214.DOI: 10.1002/jbm.b.34979.
    [29] JoshiA,ChoudhuryS,GugulothuSB,et al.Strategies to promote vascularization in 3D printed tissue scaffolds: trends and challenges[J].Biomacromolecules,2022,23(7):2730-2751.DOI: 10.1021/acs.biomac.2c00423.
    [30] YangQ,PengJ,XiaoH,et al.Polysaccharide hydrogels: functionalization, construction and served as scaffold for tissue engineering[J].Carbohydr Polym,2022,278:118952.DOI: 10.1016/j.carbpol.2021.118952.
    [31] JungK,CorriganN,WongE,et al.Bioactive synthetic polymers[J].Adv Mater,2022,34(2):e2105063.DOI: 10.1002/adma.202105063.
    [32] AliabouzarM,LeyA,MeursS,et al.Micropatterning of acoustic droplet vaporization in acoustically-responsive scaffolds using extrusion-based bioprinting[J].Bioprinting,2022,25:e00188.DOI: 10.1016/j.bprint.2021.e00188.
    [33] YanezM,RinconJ,DonesA,et al.In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds[J].Tissue Eng Part A,2015,21(1/2):224-233.DOI: 10.1089/ten.TEA.2013.0561.
    [34] KhannaA,AyanB,UndiehAA,et al.Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration[J].J Mol Cell Cardiol,2022,169:13-27.DOI: 10.1016/j.yjmcc.2022.04.017.
    [35] LiC,HanX,MaZ,et al.Engineered customizable microvessels for progressive vascularization in large regenerative implants[J].Adv Healthc Mater,2022,11(4):e2101836.DOI: 10.1002/adhm.202101836.
    [36] LuoY, ZhangT, LinX.3D printed hydrogel scaffolds with macro pores and interconnected microchannel networks for tissue engineering vascularization[J]. Chemical Engineering Journal,2022, 430:1385-8947. DOI: 10.1016/j.cej.2021.132926.
    [37] ArakawaC,GunnarssonC,HowardC,et al.Biophysical and biomolecular interactions of malaria-infected erythrocytes in engineered human capillaries[J].Sci Adv,2020,6(3):eaay7243.DOI: 10.1126/sciadv.aay7243.
    [38] ZarubovaJ,Hasani-SadrabadiMM,BacakovaL,et al.Nano-in-micro dual delivery platform for chronic wound healing applications[J].Micromachines (Basel),2020,11(2):158.DOI: 10.3390/mi11020158.
    [39] XieZ,ParasCB,WengH,et al.Dual growth factor releasing multi-functional nanofibers for wound healing[J].Acta Biomater,2013,9(12):9351-9359.DOI: 10.1016/j.actbio.2013.07.030.
    [40] MooreMJ,TanRP,YangN,et al.Bioengineering artificial blood vessels from natural materials[J].Trends Biotechnol,2022,40(6):693-707.DOI: 10.1016/j.tibtech.2021.11.003.
    [41] WangC,ChuC,ZhaoX,et al.The diameter factor of aligned membranes facilitates wound healing by promoting epithelialization in an immune way[J].Bioact Mater,2022,11:206-217.DOI: 10.1016/j.bioactmat.2021.09.022.
    [42] QianS,WangJ,LiuZ,et al.Secretory fluid-aggregated Janus electrospun short fiber scaffold for wound healing[J].Small,2022,18(36):e2200799.DOI: 10.1002/smll.202200799.
  • 加载中
计量
  • 文章访问数:  183
  • HTML全文浏览量:  147
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-26

目录

    /

    返回文章
    返回