留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高糖微环境下P62对人表皮细胞株HaCaT迁移和运动性的影响及其机制

张喻平 张琼 邓芳 陈兵 张均辉 胡炯宇

张喻平, 张琼, 邓芳, 等. 高糖微环境下P62对人表皮细胞株HaCaT迁移和运动性的影响及其机制[J]. 中华烧伤与创面修复杂志, 2022, 38(11): 1014-1022. DOI: 10.3760/cma.j.cn501225-20220630-00272.
引用本文: 张喻平, 张琼, 邓芳, 等. 高糖微环境下P62对人表皮细胞株HaCaT迁移和运动性的影响及其机制[J]. 中华烧伤与创面修复杂志, 2022, 38(11): 1014-1022. DOI: 10.3760/cma.j.cn501225-20220630-00272.
Zhang YP,Zhang Q,Deng F,et al.Effect of P62 on the migration and motility of human epidermal cell line HaCaT in high glucose microenvironment and its mechanism[J].Chin J Burns Wounds,2022,38(11):1014-1022.DOI: 10.3760/cma.j.cn501225-20220630-00272.
Citation: Zhang YP,Zhang Q,Deng F,et al.Effect of P62 on the migration and motility of human epidermal cell line HaCaT in high glucose microenvironment and its mechanism[J].Chin J Burns Wounds,2022,38(11):1014-1022.DOI: 10.3760/cma.j.cn501225-20220630-00272.

高糖微环境下P62对人表皮细胞株HaCaT迁移和运动性的影响及其机制

doi: 10.3760/cma.j.cn501225-20220630-00272
基金项目: 

国家自然科学基金青年科学基金项目 82100889

重庆市博士“直通车”项目 CSTB2022BSXM-JCX0022

陆军军医大学科技能力提升专项 XZ-2019-505-018

详细信息
    通讯作者:

    张均辉,Email:junhuizhang1990@163.com

    胡炯宇,Email:jiongyu-hu@tmmu.edu.cn

Effect of P62 on the migration and motility of human epidermal cell line HaCaT in high glucose microenvironment and its mechanism

Funds: 

Youth Science Foundation Project of National Natural Science Foundation of China 82100889

Chongqing Doctor "Through Train" Project CSTB2022BSXM-JCX0022

Science and Technology Ability Promotion Project of Army Medical University XZ-2019-505-018

More Information
  • 摘要:   目的  研究高糖微环境下P62蛋白对人表皮细胞株HaCaT迁移和运动性的影响及其可能的分子机制,以探讨糖尿病足创面难愈合的机制。  方法  采用实验研究方法。取对数生长期HaCaT进行实验。取细胞,按随机数字表法(分组方法下同)分为正常对照组(培养液含终物质的量浓度5.5 mmol/L的葡萄糖)及高糖(培养液含终物质的量浓度30.0 mmol/L的葡萄糖)24 h组、高糖48 h组、高糖72 h组。正常对照组细胞行常规培养72 h,高糖72 h组细胞行高糖培养72 h,高糖48 h组细胞先常规培养24 h再高糖培养48 h,高糖24 h组细胞先常规培养48 h再高糖培养24 h后,采用蛋白质印迹法检测P62蛋白表达。取细胞,分为正常对照组、高糖组,分别同前培养48 h后,采用免疫荧光法检测P62蛋白表达(以绿色荧光表示)。取细胞,分为阴性对照小干扰RNA(siRNA)组、P62-siRNA-1组、P62-siRNA-2组、P62-siRNA-3组,并转染相应试剂,于转染后72 h,采用蛋白质印迹法检测P62蛋白表达。取细胞,分为正常糖+阴性对照siRNA组、正常糖+P62-siRNA组、高糖+阴性对照siRNA组、高糖+P62-siRNA组,并行相应处理,于转染后72 h,采用蛋白质印迹法检测P62蛋白表达;行划痕试验检测并计算划痕后24 h细胞迁移率(样本数为9);在活细胞工作站下,观察3 h内细胞运动范围并计算运动速度(正常糖+阴性对照siRNA组、正常糖+P62-siRNA组、高糖+阴性对照siRNA组、高糖+P62-siRNA组观察细胞数分别为76、75、80、79个)。取细胞,分为正常糖+磷酸盐缓冲液(PBS)组、高糖+PBS组、高糖+N-乙酰半胱氨酸(NAC)组,行相应处理后,于培养48 h,分别采用蛋白质印迹法及免疫荧光法检测P62蛋白表达。除划痕试验外,其余实验各组样本数均为3。对数据行单因素方差分析、LSD检验。  结果  与正常对照组比较,高糖24 h组、高糖48 h组及高糖72 h组细胞P62蛋白表达量均明显增加(P<0.01)。培养48 h,高糖组细胞中P62的绿色荧光强于正常对照组。转染后72 h,与阴性对照siRNA组比较,P62-siRNA-1组、P62-siRNA-2组和P62-siRNA-3组细胞P62蛋白表达量均明显减少(P<0.01)。转染后72 h,与正常糖+阴性对照siRNA组比较,正常糖+P62-siRNA组细胞P62蛋白表达量明显减少(P<0.01),高糖+阴性对照siRNA组细胞P62蛋白表达量明显增加(P<0.01);与高糖+阴性对照siRNA组比较,高糖+P62-siRNA组细胞P62蛋白表达量明显减少(P<0.01)。划痕后24 h,与正常糖+阴性对照siRNA组[(55±7)%]比较,正常糖+P62-siRNA组细胞迁移率明显升高[(72±14)%,P<0.01],高糖+阴性对照siRNA组细胞迁移率明显下降[(37±7)%,P<0.01];与高糖+阴性对照siRNA组比较,高糖+P62-siRNA组细胞迁移率明显升高[(54±10)%,P<0.01]。观察3 h内,高糖+阴性对照siRNA组细胞运动范围较正常糖+阴性对照siRNA组缩小,正常糖+P62-siRNA组细胞运动范围较正常糖+阴性对照siRNA组增大,高糖+P62-siRNA组细胞运动范围较高糖+阴性对照siRNA组增大。与正常糖+阴性对照siRNA组比较,正常糖+P62-siRNA组细胞运动速度明显增加(P<0.01),高糖+阴性对照siRNA组细胞运动速度明显下降(P<0.01);与高糖+阴性对照siRNA组比较,高糖+P62-siRNA组细胞运动速度明显增加(P<0.01)。培养48 h,与正常糖+PBS组比较,高糖+PBS组细胞P62蛋白表达量明显增加(P<0.01);与高糖+PBS组比较,高糖+NAC组细胞P62蛋白表达量明显减少(P<0.01)。培养48 h,高糖+PBS组细胞中P62的绿色荧光强于正常糖+PBS组,而高糖+NAC组细胞中P62的绿色荧光弱于高糖+PBS组。  结论  在HaCaT中,高糖微环境可促进P62蛋白表达;敲减P62蛋白可促进其迁移并增加运动性;高糖微环境下活性氧增加可能是P62表达增加的潜在机制。

     

  • 参考文献(35)

    [1] SyedFZ.Type 1 diabetes mellitus[J].Ann Intern Med,2022,175(3):ITC33-ITC48.DOI: 10.7326/AITC202203150.
    [2] TheocharidisG,ThomasBE,SarkarD,et al.Single cell transcriptomic landscape of diabetic foot ulcers[J].Nat Commun,2022,13(1):181.DOI: 10.1038/s41467-021-27801-8.
    [3] ShiMQ, DuZ, QiYC, et al. Wound microenvironment-responsive glucose consumption and hydrogen peroxide generation synergistic with azithromycin for diabetic wounds healing[J]. Theranostics, 2022, 12(6): 2658-2673. DOI: 10.7150/thno.64244.
    [4] KlionskyDJ, PetroniG, AmaravadiRK, et al. Autophagy in major human diseases[J]. EMBO J, 2021, 40(19): e108863. DOI: 10.15252/embj.2021108863.
    [5] RenHY, ZhaoF, ZhangQQ, et al. Autophagy and skin wound healing[J/OL]. Burns Trauma, 2022, 10:tkac003[2022-06-30]. https://pubmed.ncbi.nlm.nih.gov/35187180/.DOI: 10.1093/burnst/tkac003.
    [6] LevineB, KroemerG. Biological functions of autophagy genes: a disease perspective[J]. Cell, 2019, 176(1/2): 11-42. DOI: 10.1016/j.cell.2018.09.048.
    [7] FanXL, HuangTT, TongYD, et al. p62 works as a hub modulation in the ageing process[J]. Ageing Res Rev, 2022, 73: 101538.DOI: 10.1016/j.arr.2021.101538.
    [8] ChaoXJ,NiHM,DingWX. An unexpected tumor suppressor role of SQSTM1/p62 in liver tumorigenesis[J].Autophagy,2022,18(2):459-461.DOI: 10.1080/15548627.2021.2008693.
    [9] KarrasP,Riveiro-FalkenbachE,CañónE,et al.p62/SQSTM1 fuels melanoma progression by opposing mRNA decay of a selective set of pro-metastatic factors[J].Cancer Cell,2019,35(1):46-63.e10.DOI: 10.1016/j.ccell.2018.11.008.
    [10] Serrano-SaenzS, PalaciosC, Delgado-BellidoD, et al. PIM kinases mediate resistance of glioblastoma cells to TRAIL by a p62/SQSTM1-dependent mechanism[J]. Cell Death Dis, 2019, 10(2): 51. DOI: 10.1038/s41419-018-1293-3.
    [11] IslamMA,SooroMA,ZhangPH.Autophagic regulation of p62 is critical for cancer therapy[J].Int J Mol Sci,2018,19(5):1405.DOI: 10.3390/ijms19051405.
    [12] Sánchez-MartínP,KomatsuM.p62/SQSTM1-steering the cell through health and disease[J].J Cell Sci,2018,131(21): jcs.222836.DOI: 10.1242/jcs.222836.
    [13] MildenbergerJ, JohanssonI, SerginI, et al. N-3 PUFAs induce inflammatory tolerance by formation of KEAP1-containing SQSTM1/p62-bodies and activation of NFE2L2[J]. Autophagy, 2017, 13(10): 1664-1678.DOI: 10.1080/15548627.2017.1345411.
    [14] LiLF, ZhangJH, ZhangQ, et al. High glucose suppresses keratinocyte migration through the inhibition of p38 MAPK/autophagy pathway[J]. Front Physiol, 2019, 10: 24. DOI: 10.3389/fphys.2019.00024.
    [15] ZhangJH,LiLF,ZhangQ,et al.Microtubule-associated protein 4 phosphorylation regulates epidermal keratinocyte migration and proliferation[J].Int J Biol Sci,2019,15(9):1962-1976.DOI: 10.7150/ijbs.35440.
    [16] JiangT,LiQY,QiuJM,et al.Nanobiotechnology: applications in chronic wound healing[J].Int J Nanomedicine,2022,17:3125-3145.DOI: 10.2147/IJN.S372211.
    [17] ZhangJH, ZhangC, JiangXP, et al. Involvement of autophagy in hypoxia-BNIP3 signaling to promote epidermal keratinocyte migration[J]. Cell Death Dis, 2019, 10(3): 234. DOI: 10.1038/s41419-019-1473-9.
    [18] LiBM, TangHW, BianXW, et al. Calcium silicate accelerates cutaneous wound healing with enhanced re-epithelialization through EGF/EGFR/ERK-mediated promotion of epidermal stem cell functions[J/OL]. Burns Trauma, 2021, 9: tkab029[2022-06-30]. https://pubmed.ncbi.nlm.nih.gov/34604395/.DOI: 10.1093/burnst/tkab029.
    [19] ShawTJ,MartinP.Wound repair: a showcase for cell plasticity and migration[J].Curr Opin Cell Biol,2016,42:29-37.DOI: 10.1016/j.ceb.2016.04.001.
    [20] HuSC,LanCE.High-glucose environment disturbs the physiologic functions of keratinocytes: focusing on diabetic wound healing[J].J Dermatol Sci,2016,84(2):121-127.DOI: 10.1016/j.jdermsci.2016.07.008.
    [21] ParmarUM, JalgaonkarMP, KulkarniYA, et al. Autophagy-nutrient sensing pathways in diabetic complications[J]. Pharmacol Res, 2022, 184: 106408. DOI: 10.1016/j.phrs.202-2.106408.
    [22] MatooriS, VevesA, MooneyDJ. Advanced bandages for diabetic wound healing[J]. Sci Transl Med, 2021, 13(585): eabe4839.DOI: 10.1126/scitranslmed.abe4839.
    [23] NingSB, WangL. The multifunctional protein p62 and its mechanistic roles in cancers[J]. Curr Cancer Drug Targets, 2019, 19(6): 468-478. DOI: 10.2174/1568009618666181016164920.
    [24] TaoMM, LiuT, YouQD, et al. p62 as a therapeutic target for tumor[J]. Eur J Med Chem, 2020, 193: 112231. DOI: 10.1016/j.ejmech.2020.112231.
    [25] ZhangZ,CostaM.p62 functions as a signal hub in metal carcinogenesis[J].Semin Cancer Biol,2021,76:267-278.DOI: 10.1016/j.semcancer.2021.04.014.
    [26] YouZY,JiangWX,QinLY,et al.Requirement for p62 acetylation in the aggregation of ubiquitylated proteins under nutrient stress[J].Nat Commun,2019,10(1):5792.DOI: 10.1038/s41467-019-13718-w.
    [27] GradaA, Otero-VinasM, Prieto-CastrilloF, et al. Research techniques made simple: analysis of collective cell migration using the wound healing assay[J]. J Invest Dermatol, 2017, 137(2): e11-e16.DOI: 10.1016/j.jid.2016.11.020.
    [28] 张均辉,张琼,贾杰只,等.低氧条件下B淋巴细胞瘤-2/腺病毒E1B19 000相互作用蛋白3对人真皮微血管内皮细胞迁移和运动性的影响及其机制[J].中华烧伤杂志,2021,37(1):9-16.DOI: 10.3760/cma.j.cn501120-20200927-00425.
    [29] DengLL, DuCZ, SongPY, et al. The role of oxidative stress and antioxidants in diabetic wound healing[J]. Oxid Med Cell Longev, 2021, 2021: 8852759. DOI: 10.1155/2021/8852759.
    [30] WeiXR, LiMX, ZhengZJ, et al. Senescence in chronic wounds and potential targeted therapies[J/OL]. Burns Trauma, 2022, 10: tkab045[2022-06-30]. https://pubmed.ncbi.nlm.nih.gov/35187179/.DOI: 10.1093/burnst/tkab045.
    [31] QiuJX, ZhangT, ZhuXY, et al. Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway[J]. Int J Mol Sci, 2020, 21(1): 131. DOI: 10.3390/ijms21010131.
    [32] HeinkeL. Mitochondrial ROS drive cell cycle progression[J]. Nat Rev Mol Cell Biol, 2022, 23(9): 581. DOI: 10.1038/s41580-022-00523-5.
    [33] ShenY,YangJJ,ZhaoJ,et al.The switch from ER stress-induced apoptosis to autophagy via ROS-mediated JNK/p62 signals: a survival mechanism in methotrexate-resistant choriocarcinoma cells[J].Exp Cell Res,2015,334(2):207-218.DOI: 10.1016/j.yexcr.2015.04.010.
    [34] BalszuweitF, MenacherG, SchmidtA, et al. Protective effects of the thiol compounds GSH and NAC against sulfur mustard toxicity in a human keratinocyte cell line[J]. Toxicol Lett, 2016, 244: 35-43. DOI: 10.1016/j.toxlet.2015.09.002.
    [35] RizwanH, PalS, SabnamS, et al. High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes[J]. Life Sci, 2020, 241: 117148. DOI: 10.1016/j.lfs.2019.117148.
  • 1  蛋白质印迹法检测正常对照组和高糖培养3个时间点组HaCaT中P62蛋白表达

    注:GAPDH为3-磷酸甘油醛脱氢酶;条带上方1、2、3、4分别指示正常对照组、高糖24 h组、高糖48 h组、高糖72 h组

    2  正常对照组和高糖组HaCaT培养48 h的P62蛋白表达 异硫氰酸荧光素-4',6-二脒基-2-苯基吲哚×630。2A、2B、2C.分别为正常对照组P62染色、细胞核染色、P62与细胞核染色重叠图片,细胞核完整,P62蛋白表达较少,主要分布于细胞质;2D、2E、2F.分别为高糖组P62染色、细胞核染色、P62与细胞核染色重叠图片,细胞核完整,P62蛋白表达较图2A多

    注:P62阳性染色为绿色,细胞核阳性染色为蓝色

    3  蛋白质印迹法检测转染siRNA后4组HaCaT中P62蛋白表达

    注:GAPDH为3-磷酸甘油醛脱氢酶,siRNA为小干扰RNA;条带上方1、2、3、4分别指示阴性对照siRNA组、P62-siRNA-1组、P62-siRNA-2组、P62-siRNA-3组

    4  蛋白质印迹法检测高糖微环境下siRNA对4组HaCaT转染后72 h的P62蛋白表达的作用

    注:GAPDH为3-磷酸甘油醛脱氢酶,siRNA为小干扰RNA;条带上方1、2、3、4分别指示正常糖+阴性对照siRNA组、正常糖+P62-siRNA组、高糖+阴性对照siRNA组、高糖+P62-siRNA组

    5  4组HaCaT处理完成后划痕后各时间点细胞划痕面积情况 倒置光学显微镜×100。5A、5B、5C、5D.分别为正常糖+阴性对照小干扰RNA(siRNA)组、正常糖+P62-siRNA组、高糖+阴性对照siRNA组、高糖+P62-siRNA组划痕后0 h(即刻),划痕情况相近;5E、5F、5G、5H.分别为正常糖+阴性对照siRNA组、正常糖+P62-siRNA组、高糖+阴性对照siRNA组、高糖+P62-siRNA组划痕后24 h,图5F划痕面积明显小于图5E,图5G划痕面积明显大于图5E,图5H划痕面积明显小于图5G

    6  活细胞工作站观察4组HaCaT 3 h内的运动范围。6A、6B、6C、6D.分别为正常糖+阴性对照siRNA组、正常糖+P62-siRNA组、高糖+阴性对照siRNA组、高糖+P62-siRNA组,其中图6B、6D运动范围分别较图6A、6C明显增大

    注:siRNA为小干扰RNA;细胞运动起点均为坐标(0,0),运动终点为位于4个象限中的圆点,连接两者之间的曲线为细胞运动轨迹

    7  蛋白质印迹法检测高糖微环境下NAC对3组HaCaT培养48 h的P62蛋白表达的影响

    注:GAPDH为3-磷酸甘油醛脱氢酶,PBS为磷酸缓冲盐溶液,NAC为N-乙酰半胱氨酸;条带上方1、2、3分别指示正常糖+PBS组、高糖+PBS组、高糖+NAC组

    8  3组HaCaT培养48 h的P62蛋白表达 异硫氰酸荧光素-4',6-二脒基-2-苯基吲哚×630。8A、8B、8C.分别为正常糖+PBS组P62染色、细胞核染色、P62与细胞核染色重叠图片,细胞核完整,P62蛋白表达较少,主要分布于细胞质;8D、8E、8F.分别为高糖+PBS组P62染色、细胞核染色、P62与细胞核染色重叠图片,细胞核完整,P62蛋白表达较图8A多;8G、8H、8I.分别为高糖+NAC组P62染色、细胞核染色、P62与细胞核染色重叠图片,细胞核完整,P62蛋白表达较图8D少

    注:P62阳性染色为绿色,细胞核阳性染色为蓝色;PBS为磷酸缓冲盐溶液,NAC为N-乙酰半胱氨酸

  • 加载中
图(9)
计量
  • 文章访问数:  1210
  • HTML全文浏览量:  99
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30

目录

    /

    返回文章
    返回