留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改良型富血小板纤维蛋白对裸鼠深Ⅱ度烧伤创面的作用

唐黎珺 李笑眉 张筱薇 罗艺 徐刚

唐黎珺, 李笑眉, 张筱薇, 等. 改良型富血小板纤维蛋白对裸鼠深Ⅱ度烧伤创面的作用[J]. 中华烧伤与创面修复杂志, 2023, 39(8): 771-778. DOI: 10.3760/cma.j.cn501225-20220804-00334.
引用本文: 唐黎珺, 李笑眉, 张筱薇, 等. 改良型富血小板纤维蛋白对裸鼠深Ⅱ度烧伤创面的作用[J]. 中华烧伤与创面修复杂志, 2023, 39(8): 771-778. DOI: 10.3760/cma.j.cn501225-20220804-00334.
Tang LJ,Li XM,Zhang XW,et al.Effects of advanced platelet-rich fibrin on deep partial-thickness burn wounds in nude mice[J].Chin J Burns Wounds,2023,39(8):771-778.DOI: 10.3760/cma.j.cn501225-20220804-00334.
Citation: Tang LJ,Li XM,Zhang XW,et al.Effects of advanced platelet-rich fibrin on deep partial-thickness burn wounds in nude mice[J].Chin J Burns Wounds,2023,39(8):771-778.DOI: 10.3760/cma.j.cn501225-20220804-00334.

改良型富血小板纤维蛋白对裸鼠深Ⅱ度烧伤创面的作用

doi: 10.3760/cma.j.cn501225-20220804-00334
基金项目: 

江苏省中医药科技发展计划项目 YB2020086

详细信息
    通讯作者:

    徐刚,Email:xugun2004@126.com

Effects of advanced platelet-rich fibrin on deep partial-thickness burn wounds in nude mice

Funds: 

Science and Technology Development Plan of Traditional Chinese Medicine of Jiangsu Province of China YB2020086

More Information
  • 摘要:   目的   探讨改良型富血小板纤维蛋白(A-PRF)对裸鼠深Ⅱ度烧伤创面的作用及其机制。   方法   采用实验研究方法。招募苏北人民医院40名健康志愿者,包括32名女性、8名男性,年龄为60~72岁,抽取静脉血后制备富白细胞血小板纤维蛋白(L-PRF)和A-PRF膜片,采用场发射扫描电子显微镜观察2种富血小板纤维蛋白(PRF)膜片的微观结构。以下实验样本数均为3。将L-PRF、A-PRF膜片分别设为L-PRF组、A-PRF组并进行培养,采用酶联免疫吸附测定法检测培养1、3、7、14 d上清液中血小板衍生生长因子AB(PDGF-AB)和血管内皮生长因子(VEGF)的释放浓度。取小鼠L929成纤维细胞(Fb),分为L-PRF组、A-PRF组,并分别加入L-PRF或A-PRF条件培养基培养,于培养1、3、7 d采用噻唑蓝法检测细胞增殖活性,采用划痕试验检测并计算划痕后24 h细胞迁移率。取36只6~8周龄雄性BALB/c裸鼠,于一侧后腿皮肤制作1个深Ⅱ度烧伤创面后,按随机数字表法分为生理盐水组、L-PRF组、A-PRF组,每组12只。生理盐水组裸鼠创面仅行生理盐水冲洗,L-PRF组、A-PRF组裸鼠创面另覆盖相应PRF膜片,3组裸鼠创面均用敷料包扎固定。治疗4、7、14 d,观察创面愈合情况并计算创面愈合率,取创面组织行Masson染色观察新生胶原情况,行免疫组织化学染色检测创面CD31阳性细胞百分比。对数据行独立样本 t检验、重复测量方差分析、析因设计方差分析、单因素方差分析、LSD检验。   结果   L-PRF膜片由粗大的纤维蛋白束构成致密的网状结构,散在分布形态完整的白细胞及血小板。A-PRF膜片由细小的纤维蛋白束构成疏松的网状结构,散在分布少量变形的白细胞及血小板。培养1 d,A-PRF组PRF培养上清液中PDGF-AB释放浓度明显高于L-PRF组( t=5.73, P<0.05),2组PRF培养上清液中VEGF释放浓度相近( P>0.05);培养3、7、14 d,A-PRF组PRF培养上清液中PDGF-AB、VEGF释放浓度均明显高于L-PRF组( t值分别为6.93、7.45、5.49,6.97、8.97、13.64, P<0.05)。培养3、7、14 d,2组PRF培养上清液中PDGF-AB、VEGF释放浓度均明显高于组内前一时间点( P<0.05)。培养1、3、7 d,A-PRF组小鼠Fb增殖活性分别为0.293±0.034、0.582±0.054、0.775±0.040,均明显强于L-PRF组的0.117±0.013、0.390±0.036、0.581±0.037( t值分别为8.38、5.14、6.16, P<0.05)。划痕后24 h,A-PRF组小鼠Fb迁移率为(60.9±2.2)%,明显高于L-PRF组的(39.1±2.3)%( t=11.74, P<0.05)。治疗4 d,L-PRF组和A-PRF组裸鼠创面渗液较少且未见明显感染迹象,生理盐水组裸鼠创面有较多渗液。治疗7 d,L-PRF组和A-PRF组裸鼠创面干燥结痂,生理盐水组裸鼠创面仍有少量渗液。治疗14 d,A-PRF组裸鼠创面趋于愈合,L-PRF组裸鼠仍残留小部分创面,生理盐水组裸鼠创面仍有未脱落焦痂。治疗4、7、14 d,L-PRF组裸鼠创面愈合率与CD31阳性细胞百分比均明显高于生理盐水组( P<0.05);与生理盐水组和L-PRF组相比,A-PRF组裸鼠创面愈合率均明显升高( P<0.05),新生胶原排列有序、分布均匀且未见过度沉积,CD31阳性细胞百分比均明显升高( P<0.05)。   结论   A-PRF稳定的纤维蛋白网状结构能维持生长因子持续释放、加快细胞增殖、促进细胞迁移,以缩短裸鼠深Ⅱ度烧伤创面愈合时间且改善愈合质量。

     

  • 1  2种富血小板纤维蛋白膜片微观结构 场发射扫描电子显微镜×5 000。1A.富白细胞血小板纤维蛋白膜片可见致密的纤维蛋白网状结构;1B.改良型富血小板纤维蛋白膜片可见疏松的纤维蛋白网状结构

    2  2组小鼠L929成纤维细胞划痕后各时间点划痕情况 光学显微镜×200。2A、2B.分别为富白细胞血小板纤维蛋白(L-PRF)组和改良型富血小板纤维蛋白(A-PRF)组划痕后0 h(即刻),划痕面积相近;2C、2D.分别为L-PRF组和A-PRF组划痕后24 h,图2C剩余划痕面积大于图2D

    3  3组裸鼠深Ⅱ度烧伤创面治疗各时间点愈合情况。3A、3B、3C.分别为生理盐水组治疗4、7、14 d创面情况,图3A创面湿润、焦痂下较多渗液、创缘红肿,图3B创面仍有少量渗液,图3C创面仍有少量焦痂覆盖、未见脱落迹象;3D、3E、3F.分别为富白细胞血小板纤维蛋白组治疗4、7、14 d创面情况,图3D相较图3A创面相对干燥,图3E创面被焦痂覆盖,图3F创面表面痂皮大部分脱落;3G、3H、3I.分别为改良型富血小板纤维蛋白组治疗4、7、14 d创面情况,图3G相较图3D创面渗液少,图3H创面干燥,图3I创面趋于愈合

    4  3组裸鼠深Ⅱ度烧伤创面治疗各时间点组织病理学观察 Masson×200。4A、4B、4C.分别为生理盐水组治疗4、7、14 d创面胶原沉积情况,图4A、4B可见少量胶原新生,图4C中胶原排列疏松、分布不均;4D、4E、4F.分别为富白细胞血小板纤维蛋白组治疗4、7、14 d创面胶原沉积情况,图4E胶原新生较图4D增多,图4F胶原排列整齐、分布均匀;4G、4H、4I.分别为改良型富血小板纤维蛋白组治疗4、7、14 d创面胶原沉积情况,图4G、4H中胶原分别较图4D、4E致密,图4I相比图4C、4F新生胶原数量更多,排列有序、分布均匀致密且完整度高,未见胶原过度沉积

    5  3组裸鼠深Ⅱ度烧伤创面治疗各时间点CD31阳性细胞(棕色)情况 二氨基联苯胺×200。5A、5B、5C.分别为生理盐水组治疗4、7、14 d创面CD31阳性细胞情况,图5C中CD31阳性细胞数明显多于图5A、5B;5D、5E、5F.分别为富白细胞血小板纤维蛋白组治疗4、7、14 d创面CD31阳性细胞情况,数量分别较图5A、5B、5C多;5G、5H、5I.分别为改良型富血小板纤维蛋白组治疗4、7、14 d创面CD31阳性细胞情况,图5I中CD31阳性细胞数明显多于图5C、5F

    表1  2组富血小板纤维蛋白培养各时间点上清液中生长因子释放浓度比较(pg/mL, x ¯ ± s

    组别 样本数 PDGF-AB VEGF
    1 d 3 d 7 d 14 d 1 d 3 d 7 d 14 d
    L-PRF组 3 2 594±133 3 859±269 a 4 841±188 a 5 363±165 a 124±12 153±10 a 172±9 a 185±8 a
    A-PRF组 3 3 310±171 5 123±167 a 6 194±252 a 6 951±473 a 161±22 199±6 a 235±8 a 265±6 a
    t 5.73 6.93 7.45 5.49 2.57 6.97 8.97 13.64
    P 0.005 0.002 0.002 0.005 0.062 0.002 0.001 <0.001
    注:L-PRF为富白细胞血小板纤维蛋白,A-PRF为改良型富血小板纤维蛋白,PDGF-AB为血小板衍生生长因子AB,VEGF为血管内皮生长因子;PDGF-AB、VEGF处理因素主效应, F值分别为109.04、313.26, P值均<0.001;时间因素主效应, F值分别为213.26、52.41, P值均<0.001;两者交互作用, F值分别为3.71、3.58, P值分别为0.043、0.047;与组内前一时间点比较, a P<0.05
    下载: 导出CSV

    表2  3组裸鼠深Ⅱ度烧伤创面治疗各时间点愈合率比较(%, x ¯ ± s

    组别 样本数 4 d 7 d 14 d
    生理盐水组 3 12.9±2.4 26.0±2.0 39.4±3.2
    L-PRF组 3 19.8±2.6 32.4±3.3 57.5±4.5
    A-PRF组 3 32.9±4.8 54.7±4.5 81.0±6.2
    F 26.03 58.36 56.33
    P 0.001 <0.001 <0.001
    P 1 0.026 0.047 0.005
    P 2 0.003 0.001 0.001
    P 3 0.014 0.002 0.006
    注:L-PRF为富白细胞血小板纤维蛋白,A-PRF为改良型富血小板纤维蛋白;时间因素主效应, F=290.35, P<0.001;处理因素主效应, F=98.71, P<0.001;两者交互作用, F=13.37, P<0.001; P 1值、 P 2值分别为生理盐水组与L-PRF组、A-PRF组各时间点比较所得; P 3值为L-PRF组与A-PRF组各时间点比较所得
    下载: 导出CSV

    表3  3组裸鼠深Ⅱ度烧伤创面治疗各时间点CD31阳性细胞百分比比较(%, x ¯ ± s

    组别 样本数 4 d 7 d 14 d
    生理盐水组 3 12.1±1.2 25.2±3.1 45.8±3.8
    L-PRF组 3 20.3±3.3 37.5±2.3 63.1±1.3
    A-PRF组 3 32.8±4.6 53.6±5.4 80.3±2.3
    F 29.84 41.44 124.02
    P 0.001 <0.001 <0.001
    P 1 0.015 0.005 0.002
    P 2 0.002 0.001 <0.001
    P 3 0.018 0.009 <0.001
    注:L-PRF为富白细胞血小板纤维蛋白,A-PRF为改良型富血小板纤维蛋白;时间因素主效应, F=355.10, P<0.001;处理因素主效应, F=160.29, P<0.001;两者交互作用, F=3.43, P=0.030; P 1值、 P 2值分别为生理盐水组与L-PRF组、A-PRF组各时间点比较所得; P 3值为L-PRF组与A-PRF组各时间点比较所得
    下载: 导出CSV
  • [1] HettiaratchyS,DziewulskiP.ABC of burns: pathophysiology and types of burns[J].BMJ,2004,328(7453):1427-1429.DOI: 10.1136/bmj.328.7453.1427.
    [2] PeckMD.Epidemiology of burns throughout the world. Part I: distribution and risk factors[J].Burns,2011,37(7):1087-1100.DOI: 10.1016/j.burns.2011.06.005.
    [3] GragnaniA, TonarelliE, ChomiskiV, et al. Fibroblast growth factor in the treatment of burns: a systematic review[J].Burns,2022,48(1):104-110.DOI: 10.1016/j.burns.2021.04.006.
    [4] ShuWT, WangYN, ZhangX, et al. Functional hydrogel dressings for treatment of burn wounds[J]. Front Bioeng Biotechnol,2021,9:788461.DOI: 10.3389/fbioe.2021.788461.
    [5] HermansMH.Porcine xenografts vs. (cryopreserved) allografts in the management of partial thickness burns: is there a clinical difference?[J].Burns,2014,40(3):408-415.DOI: 10.1016/j.burns.2013.08.020.
    [6] WangY, BeekmanJ, HewJ, et al. Burn injury: challenges and advances in burn wound healing, infection, pain and scarring[J]. Adv Drug Deliv Rev,2018,123:3-17.DOI: 10.1016/j.addr.2017.09.018.
    [7] HexterAT,Sanghani-KeraiA,HeidariN,et al.Mesenchymal stromal cells and platelet-rich plasma promote tendon allograft healing in ovine anterior cruciate ligament reconstruction[J].Knee Surg Sports Traumatol Arthrosc,2021,29(11):3678-3688.DOI: 10.1007/s00167-020-06392-9.
    [8] KarimiK, RockwellH. The benefits of platelet-rich fibrin[J]. Facial Plast Surg Clin North Am,2019,27(3):331-340.DOI: 10.1016/j.fsc.2019.03.005.
    [9] NakanishiY, MatsushitaT, NagaiK, et al. Fibrin clot and leukocyte-rich platelet-rich fibrin show similar release kinetics and amount of growth factors: a pilot study[J]. J Orthop Surg Res,2023,18(1):238.DOI: 10.1186/s13018-023-03709-5.
    [10] WangPH,HuangBS,HorngHC,et al.Wound healing[J].J Chin Med Assoc,2018,81(2):94-101.DOI: 10.1016/j.jcma.2017.11.002.
    [11] KwonSH,BarreraJA,NoishikiC,et al.Current and emerging topical scar mitigation therapies for craniofacial burn wound healing[J].Front Physiol,2020,11:916.DOI: 10.3389/fphys.2020.00916.
    [12] ZubairM, AhmadJ. Role of growth factors and cytokines in diabetic foot ulcer healing: a detailed review[J]. Rev Endocr Metab Disord,2019,20(2):207-217.DOI: 10.1007/s11154-019-09492-1.
    [13] MironRJ,DhamA,DhamU,et al.The effect of age, gender, and time between blood draw and start of centrifugation on the size outcomes of platelet-rich fibrin (PRF) membranes[J].Clin Oral Investig,2019,23(5):2179-2185.DOI: 10.1007/s00784-018-2673-x.
    [14] BoltonL. Platelet-rich plasma: optimal use in surgical wounds[J]. Wounds,2021,33(8):219-221. DOI: 10.25270/wnds/2021.219221.
    [15] Vidán-EstévezJ, Sánchez-HerráezS, Escalante-BarrigónF, et al. Healing of chronic wounds with platelet-derived growth factors from single donor platelet-rich plasma following one freeze-thaw cycle. A cross-sectional study[J]. J Clin Med,2021,10(24):5762.DOI: 10.3390/jcm10245762.
    [16] OlivaN,AlmquistBD.Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials[J].Adv Drug Deliv Rev,2020,161-162:22-41.DOI: 10.1016/j.addr.2020.07.021.
    [17] Castillo-HenríquezL, Castro-AlpízarJ, Lopretti-CorreaM, et al. Exploration of bioengineered scaffolds composed of thermo-responsive polymers for drug delivery in wound healing[J]. Int J Mol Sci,2021,22(3):1408.DOI: 10.3390/ijms22031408.
    [18] LiuMQ, WeiXR, ZhengZJ, et al. Recent advances in nano-drug delivery systems for the treatment of diabetic wound healing[J]. Int J Nanomedicine,2023,18:1537-1560.DOI: 10.2147/IJN.S395438.
    [19] ShahSA, SohailM, KhanS, et al. Biopolymer-based biomaterials for accelerated diabetic wound healing: a critical review[J]. Int J Biol Macromol,2019,139:975-993.DOI: 10.1016/j.ijbiomac.2019.08.007.
    [20] García-SánchezJM, Mirabet LisV, Ruiz-VallsA, et al. Platelet rich plasma and plasma rich in growth factors for split-thickness skin graft donor site treatment in the burn patient setting: a randomized clinical trial[J].Burns,2022,48(7):1662-1670.DOI: 10.1016/j.burns.2021.10.001.
    [21] BernatchezSF, BichelJ. The science of skin: measuring damage and assessing risk[J]. Adv Wound Care (New Rochelle),2023,12(4):187-204.DOI: 10.1089/wound.2022.0021.
    [22] ShenSH,WangFY,FernandezA,et al.Role of platelet-derived growth factor in type Ⅱ diabetes mellitus and its complications[J].Diab Vasc Dis Res,2020,17(7):1479164120942119.DOI: 10.1177/1479164120942119.
    [23] CuiHS, ChoYS, JooSY, et al. Wound healing potential of low temperature plasma in human primary epidermal keratinocytes[J]. Tissue Eng Regen Med,2019,16(6):585-593.DOI: 10.1007/s13770-019-00215-w.
    [24] GaroufaliaZ, PapadopetrakiA, KaratzaE, et al. Insulin-like growth factor-I and wound healing, a potential answer to non-healing wounds: a systematic review of the literature and future perspectives[J]. Biomed Rep,2021,15(2):66.DOI: 10.3892/br.2021.1442.
    [25] FangZ,YangX,WuG,et al.The use of autologous platelet-rich plasma gel increases wound healing and reduces scar development in split-thickness skin graft donor sites[J].J Plast Surg Hand Surg,2019,53(6):356-360.DOI: 10.1080/2000656X.2019.1635489.
    [26] OgaiK,ShibataK,TakahashiN,et al.Amplicon-based skin microbiome profiles collected by tape stripping with different adhesive film dressings: a comparative study[J].BMC Microbiol,2021,21(1):54.DOI: 10.1186/s12866-021-02122-4.
    [27] GuptaA, ChannaveeraC, SethiS, et al. Efficacy of intralesional platelet-rich plasma in diabetic foot ulcer[J]. J Am Podiatr Med Assoc,2021,111(3):Article_7.DOI: 10.7547/19-149.
    [28] 洪武,李少峰,林钰梅.富血小板纤维蛋白联合网状中厚皮植皮在手背深度烧伤创面中的应用[J].中国医药科学,2022,12(21):193-196.DOI: 10.3969/j.issn.2095-0616.2022.21.049.
    [29] 刘中波,周大鹏,左娜,等.富血小板纤维蛋白联合薄中厚皮片治疗小面积深度皮肤损伤的临床研究[J].中国临床实用医学,2023,14(2):46-49.DOI: 10.3760/cma.j.cn115570-20230107-00011.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  35
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-04

目录

    /

    返回文章
    返回