-
摘要: 皮肤纤维化疾病主要包括增生性瘢痕、瘢痕疙瘩及系统性硬化病等,其主要病理特点为成纤维细胞过度激活和细胞外基质异常沉积。近年来研究表明,有氧糖酵解与皮肤纤维化疾病的发生与发展密切相关,以有氧糖酵解为治疗靶点的药物为皮肤抗纤维化治疗提供了新的思路。该文就有氧糖酵解相关酶和产物在皮肤纤维化疾病发生与发展中的作用及靶向有氧糖酵解治疗皮肤纤维化疾病的药物进行综述。Abstract: Skin fibrosis diseases mainly include hypertrophic scar, keloid, and systemic sclerosis, etc. The main pathological features are excessive activation of fibroblasts and abnormal deposition of extracellular matrix. In recent years, studies have shown that aerobic glycolysis is closely related to the occurrence and development of skin fibrosis diseases. Drugs targeting aerobic glycolysis has provided new ideas for skin anti-fibrosis treatment. This article reviews the role of enzymes and products related to aerobic glycolysis in the occurrence and development of skin fibrosis diseases and the drugs targeting aerobic glycolysis for the treatment of skin fibrosis diseases.
-
Key words:
- Cicatrix /
- Skin diseases /
- Glycolysis /
- Fibrosis /
- Fibroblasts
-
皮肤纤维化疾病是一类严重影响患者身心健康的疾病,可由烧创伤、手术或疾病引起 [ 1] ,主要包括增生性瘢痕、瘢痕疙瘩及系统性硬化病等 [ 2, 3, 4] 。皮肤纤维化疾病由于治疗周期长、个体差异大及复发率高等原因,造成了沉重的社会卫生经济负担。目前,临床仍然缺乏能有效缓解或治疗皮肤纤维化疾病的理想药物。
皮肤纤维化疾病的主要病理特点是以胶原蛋白为主的ECM异常沉积,导致瘢痕过度增生或皮肤增厚。Fb在调节ECM稳态中发挥主要作用,其在多条信号通路(包括TGF-β、Wnt和血小板衍生生长因子信号通路)的调控下实现活化和增殖;其次,促炎性细胞因子如TNF-α、IL-1或IL-6等也可作用于Fb促进其活化和增殖 [ 5, 6] 。此外,内皮细胞、巨噬细胞等其他细胞也参与皮肤纤维化疾病的发生与发展 [ 7] 。近年来的相关机制研究为该疾病的治疗带来了新希望,特别是细胞代谢调节领域研究的快速进展,为研究者们提供了新的思考及探索途径。本文就有氧糖酵解相关酶和产物在皮肤纤维化疾病发生与发展中的作用及靶向有氧糖酵解治疗皮肤纤维化疾病的药物进行综述。
1. 皮肤纤维化疾病中异常的有氧糖酵解
糖酵解是指细胞质内葡萄糖在无氧或缺氧条件下分解为乳酸,并产生ATP的过程。在氧气充足的正常细胞中,葡萄糖分解为丙酮酸后易位至线粒体,通过三羧酸循环和氧化呼吸链产生大量的ATP [ 8] 。有氧糖酵解是指即使在氧气充足的情况下,细胞仍然倾向于糖酵解,丙酮酸经乳酸脱氢酶(lactate dehydrogenase,LDH)催化产生大量乳酸,同时抑制线粒体氧化磷酸化(oxidative phosphorylation,OXPHOS),这种现象最初在1927年由Otto Warburg于肿瘤细胞中观察到,并被命名为Warburg效应 [ 9] 。
近年来研究表明,有氧糖酵解与皮肤纤维化疾病的发生与发展密切相关,有氧糖酵解不仅与Fb的增殖、活化相关,也参与ECM的过量积累 [ 10, 11, 12] 。研究显示,在皮肤伤口愈合早期,有氧糖酵解可能作为一种机体自我保护机制,有利于细胞快速供能并促进伤口愈合,但是后期持续增强的有氧糖酵解会影响组织重塑,导致增生性瘢痕形成 [ 13] 。研究者运用氟脱氧葡萄糖正电子发射断层扫描对5例瘢痕疙瘩患者病损处进行扫描,结果显示瘢痕疙瘩较周围正常皮肤葡萄糖聚集增加,提示瘢痕疙瘩中糖代谢发生了改变 [ 14] 。后续研究显示患者瘢痕疙瘩中糖酵解标志物含量明显升高 [ 15] ,瘢痕疙瘩来源的Fb中葡萄糖消耗、乳酸生成、丙酮酸激酶M2(pyruvate kinase M2,PKM2)及Ⅰ型胶原水平均高于正常皮肤Fb [ 16, 17, 18] 。系统性硬化病患者Fb中的糖酵解相关酶储量增加,表明这些细胞在OXPHOS受损的条件下糖酵解水平升高,并产生更多的乳酸 [ 19, 20] 。针对小鼠ECM致密处的足垫皮肤和ECM菲薄的腹部皮肤基因测序结果显示,ECM致密处糖酵解相关分子基因表达水平上调 [ 13] 。这些研究显示,有氧糖酵解在皮肤损伤发生时启动,在整个损伤修复过程中发挥重要作用,但组织重塑期持续增强的有氧糖酵解导致了皮肤纤维化疾病的发生。
2. 有氧糖酵解在皮肤纤维化疾病中的作用
有氧糖酵解在皮肤纤维化疾病中通过促进乳酸生成,调节缺氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)的表达,增强PKM2、葡萄糖转运蛋白1(glucose transporter 1,GLUT1)及磷酸甘油酸激酶1(phosphoglycerate kinase 1,PGK1)的表达,刺激Fb活化和增殖、内皮-间质转化及胶原蛋白合成,从而在皮肤纤维化疾病的发生与发展过程中发挥重要作用。见 图1。
2.1 促进乳酸生成
乳酸由丙酮酸经LDH催化产生,通过单羧酸转运蛋白转运。在纤维化组织中,糖酵解水平的升高导致乳酸大量堆积,促进Fb活化、增殖及内皮-间质转化,增加ECM分泌。有研究表明,人瘢痕疙瘩中央的Fb中LDH、单羧酸转运蛋白4表达水平升高 [ 15] ,这些Fb较正常真皮Fb消耗更多的葡萄糖,产生更多乳酸 [ 21] 。系统性硬化病患者真皮中的Fb有氧糖酵解增强导致乳酸释放增加,随后细胞外酸化促进内皮-间质转化,加重了系统性硬化病中的组织纤维化 [ 20] 。研究者在急性肾损伤小鼠模型中观察到,增强的有氧糖酵解产生的乳酸被肾Fb摄取,诱导Fb活化为肌Fb,引起ECM堆积 [ 22] 。TGF-β 1在Fb转分化为肌Fb中起重要作用,是主要的促纤维化因子之一 [ 23] ,其活化依赖于细胞微环境中的蛋白酶、pH或活性氧 [ 24] 。大量堆积的乳酸可以通过改变人肺Fb微环境pH激活TGF-β 1 [ 25] 。同时,乳酸可加快多种癌细胞系增殖期细胞中有丝分裂的完成,缩短细胞倍增时间,提高增殖效率 [ 26] 。有关肾纤维化的研究表明,乳酸可加快小鼠肾间质Fb的增殖 [ 22] 。进一步的研究揭示了多种癌细胞系和人胚胎肾细胞内乳酸浓度随有丝分裂的进行而增加,乳酸通过在小泛素样修饰物特异性蛋白酶1活性位点与锌形成复合物,结合并抑制小泛素样修饰物特异性蛋白酶1,这一作用稳定了后期促进复合物/细胞周期体亚基4上2个残基的小泛素化修饰,驱动了泛素结合酶E2与后期促进复合物/细胞周期体的结合,刺激细胞周期蛋白B1和分离酶抑制蛋白的定时降解,加快了细胞增殖 [ 26] 。二氯乙酸钠是线粒体丙酮酸脱氢酶激酶(pyruvate dehydrogenase kinase,PDK)的抑制剂,可优先驱动线粒体氧化丙酮酸拮抗乳酸的产生,从而维持细胞周期蛋白B1和分离酶抑制蛋白的稳定,延长有丝分裂的时间,减缓细胞增殖 [ 26] 。
2.2 调节HIF-1α的表达
HIF-1α是调节HIF-1活性的主要亚单位,其可显著提高多种细胞包括Fb的糖酵解水平 [ 27] 。研究者在小鼠胚胎Fb中观察到,HIF-1会上调 PDK1基因表达,抑制丙酮酸脱氢酶,进一步抑制三羧酸循环,使葡萄糖代谢物(丙酮酸)由OXPHOS反应转变为糖酵解 [ 28] 。GLUT对葡萄糖的吸收和转运至关重要,其中GLUT1是分布最为广泛的GLUT。HIF-1作用于多种癌细胞 GLUT1基因的增强子,上调其表达,升高糖酵解水平 [ 29] 。此外,HIF-1α可直接促进Fb活化。关于人肺纤维化的研究表明,肌Fb中6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶3(6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3,PFKFB3)表达增加使得糖酵解水平升高,导致三羧酸循环中间产物琥珀酸水平上调,琥珀酸可稳定HIF-1α的结构,染色质免疫沉淀试验证实HIF-1α在经TGF-β 1处理后直接结合于α平滑肌肌动蛋白基因的启动子区域,促进人肺Fb转分化为肌Fb [ 10] 。
2.3 增强PKM2的表达
PKM2是糖酵解中催化葡萄糖生成丙酮酸的主要限速酶之一。人瘢痕疙瘩Fb中的PKM2在低氧刺激下较在正常Fb中的表达升高 [ 30] 。人增生性瘢痕来源的内源性多肽-增生性瘢痕失调多肽1通过与黏着斑激酶和PKM2结合,下调两者活性,并抑制Smad2磷酸化,达到抑制增生性瘢痕Fb增殖,促进Fb凋亡,降低S期Fb比例及减少胶原合成的作用 [ 31] 。
PKM2以4种不同的酶促状态存在:无活性单体、几乎无活性的二聚体、无活性T态四聚体和活性R态四聚体,四者之间的比例决定PKM2最终的功能 [ 32] 。目前,关于增大PKM2四聚体占比在不同组织纤维化中的作用机制有不同的研究结果。有研究显示,四氯化碳诱导的小鼠肝纤维化模型中肝Fb的PKM2表达上调,敲除 PKM2基因或使PKM2四聚体化会显著抑制体外小鼠肝Fb的活化和增殖 [ 33] 。在选择性PKM2四聚体化激活剂焦磷酸四乙酯-46作用下,小鼠主动脉内皮细胞产生较低浓度的乳酸,抑制了体内外的内皮-间质转化 [ 34] 。然而,PKM2四聚体在人纤维化肺组织中的Fb内表达上调,PKM2四聚体可与Smad7形成络合物,阻断Smad7与TGF-β 1Ⅰ型受体结合,抑制TGF-β 1Ⅰ型受体泛素化,使其保持稳定,从而增强TGF-β 1信号通路转导,促进纤维化进程 [ 35] 。综合以上研究,考虑PKM2在纤维化中发挥不同作用的原因可能基于以下2点:(1)上述研究均未对PKM2四聚体的活性状态进行区分,因此产生了不同的研究结果;(2)PKM2不同构象调控不同的纤维化信号通路,这些信号通路同时受纤维化发展阶段中其他分子的调控。因此,PKM2不同构象在纤维化中的具体作用机制仍需进一步研究明确。
2.4 增强GLUT1的表达
研究显示,烧伤患者皮肤形成的瘢痕疙瘩组织中糖酵解和GLUT1表达增强 [ 36] 。有研究表明,TGF-β 1在小鼠原代肝Fb中可通过经典和非经典通路上调GLUT1的表达,从而促进肝纤维化,通过根皮素抑制GLUT1则可逆转TGF-β 1对肝Fb迁移和增殖的影响,并延迟肝Fb转分化为肌Fb的过程;动物实验结果显示,腹腔注射根皮素缓解了四氯化碳诱导的小鼠肝纤维化 [ 37] 。
2.5 促进PGK1的表达
PGK1在糖酵解过程中催化1,3-二磷酸甘油酸转变成3-磷酸甘油酸,并产生ATP。研究者观察到PGK1在人瘢痕疙瘩组织和瘢痕疙瘩Fb中均高表达,敲除 PGK1基因后,瘢痕疙瘩Fb的增殖、迁移、侵袭和Ⅰ型胶原表达均受到抑制,并且磷脂酰肌醇-3-激酶(phosphoinositide 3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)通路的磷酸化被显著抑制,在PI3K抑制剂LY294002作用于瘢痕疙瘩Fb后,GLUT1、LDHA和Ⅰ型胶原的表达均下调,研究者推测PGK1通过PI3K/Akt途径介导上述基因在瘢痕疙瘩Fb中的表达 [ 38] 。
3. 抑制有氧糖酵解的药物
在皮肤纤维化疾病的发生与发展过程中,有氧糖酵解参与并发挥了重要作用,以抑制有氧糖酵解为治疗靶点的药物为皮肤纤维化疾病提供了新的治疗思路。抑制有氧糖酵解的药物通过靶向有氧糖酵解相关酶和综合抑制有氧糖酵解发挥作用。
3.1 靶向有氧糖酵解相关酶的药物
研究显示,紫草素通过抑制PKM2下调糖酵解水平并抑制核苷酸结合寡聚化结构域样受体热蛋白结构域相关蛋白3介导的炎症反应,改善了小鼠烧伤创面的异常愈合,防止了瘢痕疙瘩的形成 [ 36] 。另有研究表明,紫草素可降低机械通气诱导的肺纤维化小鼠肺泡灌洗液中的乳酸和Ⅰ型原胶原羟基端延长肽,减轻肺组织中的胶原沉积,抑制小鼠肺纤维化 [ 39] 。2-脱氧-D-葡萄糖(2-deoxy-D-glucose,2-DG)是己糖激酶-2的抑制剂 [ 11] ,研究者通过构建人真皮原代Fb的Smad3驱动荧光素酶报告基因,使用2-DG抑制糖酵解可下调由TGF-β 1诱导的 Smad3依赖性转录,表明2-DG可下调ECM水平,从而改善皮肤纤维化 [ 13] 。Li等 [ 40] 关于瘢痕疙瘩的研究表明,2-DG可以剂量和时间依赖的方式抑制人瘢痕疙瘩Fb的增殖。3-(3-吡啶基)-1-(4-吡啶基)-2-丙烯-1-酮是PFKFB3的抑制剂 [ 10] ,可缓解由TGF-β 1刺激人真皮Fb发生的胶原沉积 [ 19] 。草氨酸盐可通过竞争性结合LDH而后抑制LDH [ 22] ,继而减少小鼠肾小管上皮细胞的乳酸生成,抑制叶酸诱导损伤后的小鼠肾Fb活化和增殖 [ 22] 。化合物408可抑制LDH5并逆转TGF-β 1介导的人原代肺Fb中代谢方式向有氧糖酵解的转变 [ 41] 。木蝴蝶素A通过抑制LDHA下调人肝Fb内的糖酵解,抑制肝Fb收缩,从而缓解肝纤维化 [ 42] 。
3.2 综合抑制有氧糖酵解的药物
目前研究表明,二甲双胍可下调Warburg效应的关键因子HIF-1α、GLUT1、PDK1、己糖激酶和LDH,在长时程快速心房起搏诱导的犬慢性房颤模型中,通过口服给予二甲双胍,缓解了犬心房纤维化 [ 43] 。另有研究表明,二甲双胍通过调节人肺Fb腺苷酸激活蛋白激酶/哺乳动物雷帕霉素靶蛋白途径抑制人肺Fb胶原合成 [ 44] 。3-溴丙酮酸是一种小分子烷化剂,有研究者在单侧输尿管结扎诱导的小鼠肾纤维化模型中,通过腹腔注射3-溴丙酮酸,使得小鼠肾Fb中有氧糖酵解相关酶己糖激酶-2、LDHA和PKM2的表达水平下调,小鼠肾Fb的活化、增殖和ECM的合成均受到抑制,从而缓解了小鼠肾纤维化 [ 45] 。博来霉素诱导的小鼠肺纤维化研究表明,血管活性肽可通过血管活性肽-MAS相关G蛋白偶联受体D轴下调小鼠肺Fb中己糖激酶-2、PFKFB3表达水平,抑制糖酵解,并缓解博来霉素诱导的小鼠肺纤维化 [ 46] 。雷公藤红素可下调糖酵解酶(如GLUT1、己糖激酶-2、LDHA、PKM2)和相关信号蛋白(如Akt、HIF-1α、哺乳动物雷帕霉素靶蛋白)的表达水平,抑制Warburg效应,减轻小鼠非酒精性脂肪性肝病肝脏纤维化 [ 47] 。
4. 总结与展望
有氧糖酵解在皮肤损伤发生时同步启动,持续存在于整个损伤修复过程中,后期不断增强的有氧糖酵解打破了组织重塑期的能量代谢平衡,通过多种复杂机制促使纤维化发生。使用有氧糖酵解相关酶的抑制剂或其他小分子化合物及目前已经研制出的药物抑制有氧糖酵解,可达到抑制皮肤纤维化的目的,说明有氧糖酵解参与皮肤纤维化的过程并在其中发挥重要作用,抑制有氧糖酵解可以为皮肤纤维化疾病的防治提供一个新方向。但是,尽管目前已有许多关于有氧糖酵解促纤维化相关机制的研究报道,但其大多着眼于内脏器官纤维化,关于皮肤纤维化的研究仍非常有限,缺乏精准的信号通路转导、蛋白相互作用关系及皮肤纤维化疾病发生、发展和稳定过程中的持续监测数据。因此,有氧糖酵解促进皮肤纤维化疾病发生与发展的具体及关键机制的揭秘和整个疾病发展过程中的变化情况亟待探索。相关机制的深入研究会有助于筛选更好的靶向有氧糖酵解的治疗药物,从而为皮肤纤维化疾病提供更精准、更有效的临床治疗方法。
所有作者均声明不存在利益冲突 -
参考文献
(47) [1] WynnTA, RamalingamTR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease[J]. Nat Med, 2012,18(7):1028-1040. DOI: 10.1038/nm.2807. [2] BairkdarM, RossidesM, WesterlindH, et al. Incidence and prevalence of systemic sclerosis globally: a comprehensive systematic review and meta-analysis[J]. Rheumatology (Oxford), 2021,60(7):3121-3133. DOI: 10.1093/rheumatology/keab190. [3] FinnertyCC, JeschkeMG, BranskiLK, et al. Hypertrophic scarring: the greatest unmet challenge after burn injury[J]. Lancet, 2016,388(10052):1427-1436. DOI: 10.1016/S0140-6736(16)31406-4. [4] HuangC, WuZ, DuY, et al. The epidemiology of keloids[M/OL]//Téot L, Mustoe TA, Middelkoop E, et al. Textbook on scar management: state of the art management and emerging technologies. Cham(CH): Springer, 2020: 29-35[2023-05-18]. http://link.springer.com/ 10.1007/978-3-030-44766-3_4. DOI: 10.1007/978-3-030-44766-3_4. [5] HendersonNC, RiederF, WynnTA. Fibrosis: from mechanisms to medicines[J]. Nature, 2020,587(7835):555-566. DOI: 10.1038/s41586-020-2938-9. [6] PlikusMV, WangXJ, SinhaS, et al. Fibroblasts: origins, definitions, and functions in health and disease[J]. Cell, 2021,184(15):3852-3872. DOI: 10.1016/j.cell.2021.06.024. [7] RodriguesM, KosaricN, BonhamCA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019, 99(1): 665-706. DOI: 10.1152/physrev.00067.2017. [8] BianXL, JiangHF, MengY, et al. Regulation of gene expression by glycolytic and gluconeogenic enzymes[J]. Trends Cell Biol, 2022,32(9):786-799. DOI: 10.1016/j.tcb.2022.02.003. [9] WarburgO, WindF, NegeleinE. The metabolism of tumors in the body[J]. J Gen Physiol, 1927, 8(6): 519-530. DOI: 10.1085/jgp.8.6.519. [10] XieN, TanZ, BanerjeeS, et al. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis[J]. Am J Respir Crit Care Med, 2015, 192(12): 1462-1474. DOI: 10.1164/rccm.201504-0780OC. [11] ChenZT, GaoQY, WuMX, et al. Glycolysis inhibition alleviates cardiac fibrosis after myocardial infarction by suppressing cardiac fibroblast activation[J]. Front Cardiovasc Med, 2021, 8: 701745. DOI: 10.3389/fcvm.2021.701745. [12] HuangT, LiYQX, ZhouMY, et al. Focal adhesion kinase-related non-kinase ameliorates liver fibrosis by inhibiting aerobic glycolysis via the FAK/Ras/c-myc/ENO1 pathway[J]. World J Gastroenterol, 2022,28(1):123-139. DOI: 10.3748/wjg.v28.i1.123. [13] ZhaoX, PsarianosP, GhoraieLS, et al. Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis[J]. Nat Metab, 2019,1(1):147-157. DOI: 10.1038/s42255-018-0008-5. [14] OzawaT, OkamuraT, HaradaT, et al. Accumulation of glucose in keloids with FDG-PET[J]. Ann Nucl Med, 2006,20(1):41-44. DOI: 10.1007/BF02985589. [15] OkunoR, ItoY, EidN, et al. Upregulation of autophagy and glycolysis markers in keloid hypoxic-zone fibroblasts: morphological characteristics and implications[J]. Histol Histopathol, 2018,33(10):1075-1087. DOI: 10.14670/HH-18-005. [16] SitKH, LauYK, AwSE. Differential oxygen sensitivities in G6PDH activities of cultured keloid and normal skin dermis single cells[J]. J Dermatol, 1991,18(10):572-579. DOI: 10.1111/j.1346-8138.1991.tb03135.x. [17] 苏治国,范金财,刘立强, 等. 瘢痕疙瘩成纤维细胞中Warburg效应的研究[J]. 中华整形外科杂志,2020,36(10):1100-1105. DOI: 10.3760/cma.j.cn114453-20200220-00064. [18] 杨怡圆, 周仁鹏, 候家琳, 等. M2型丙酮酸激酶对瘢痕疙瘩成纤维细胞功能的影响[J].组织工程与重建外科杂志,2020,16(5):351-358. DOI: 10.3969/j.issn.1673-0364.2020.05.002. [19] HendersonJ, DuffyL, StrattonR, et al. Metabolic reprogramming of glycolysis and glutamine metabolism are key events in myofibroblast transition in systemic sclerosis pathogenesis[J]. J Cell Mol Med, 2020,24(23):14026-14038. DOI: 10.1111/jcmm.16013. [20] AndreucciE, MargheriF, PeppicelliS, et al. Glycolysis-derived acidic microenvironment as a driver of endothelial dysfunction in systemic sclerosis[J]. Rheumatology (Oxford), 2021,60(10):4508-4519. DOI: 10.1093/rheumatology/keab022. [21] VincentAS, PhanTT, MukhopadhyayA, et al. Human skin keloid fibroblasts display bioenergetics of cancer cells[J]. J Invest Dermatol, 2008,128(3):702-709. DOI: 10.1038/sj.jid.5701107. [22] ShenY, JiangL, WenP, et al. Tubule-derived lactate is required for fibroblast activation in acute kidney injury[J]. Am J Physiol Renal Physiol, 2020,318(3):F689-F701. DOI: 10.1152/ajprenal.00229.2019. [23] FrangogiannisN. Transforming growth factor-β in tissue fibrosis[J]. J Exp Med, 2020,217(3):e20190103. DOI: 10.1084/jem.20190103. [24] ShiML, ZhuJH, WangR, et al. Latent TGF-β structure and activation[J]. Nature, 2011,474(7351):343-349. DOI: 10.1038/nature10152. [25] KottmannRM, KulkarniAA, SmolnyckiKA, et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β[J]. Am J Respir Crit Care Med, 2012,186(8):740-751. DOI: 10.1164/rccm.201201-0084OC. [26] LiuWH, WangY, BoziLHM, et al. Lactate regulates cell cycle by remodelling the anaphase promoting complex[J]. Nature, 2023, 616(7958): 790-797. DOI: 10.1038/s41586-023-05939-3. [27] IyerNV, KotchLE, AganiF, et al. Cellular and developmental control of O 2 homeostasis by hypoxia-inducible factor 1α[J]. Genes Dev, 1998, 12(2): 149-162. DOI: 10.1101/gad.12.2.149. [28] KimJW, TchernyshyovI, SemenzaGL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia[J]. Cell Metab, 2006,3(3):177-185. DOI: 10.1016/j.cmet.2006.02.002. [29] NagaoA, KobayashiM, KoyasuS, et al. HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance[J]. Int J Mol Sci, 2019, 20(2): 238. DOI: 10.3390/ijms20020238. [30] WangQF, WangP, QinZL, et al. Altered glucose metabolism and cell function in keloid fibroblasts under hypoxia[J]. Redox Biol, 2021,38:101815. DOI: 10.1016/j.redox.2020.101815. [31] LiJY, YinYL, ZhangEY, et al. Peptide deregulated in hypertrophic scar-1 alleviates hypertrophic scar fibrosis by targeting focal adhesion kinase and pyruvate kinase M2 and remodeling the metabolic landscape[J]. Int J Biol Macromol, 2023,235:123809. DOI: 10.1016/j.ijbiomac.2023.123809. [32] AlquraishiM, PuckettDL, AlaniDS, et al. Pyruvate kinase M2: a simple molecule with complex functions[J]. Free Radic Biol Med, 2019,143:176-192. DOI: 10.1016/j.freeradbiomed.2019.08.007. [33] ZhengDD, JiangYC, QuC, et al. Pyruvate kinase M2 tetramerization protects against hepatic stellate cell activation and liver fibrosis[J]. Am J Pathol, 2020, 190(11): 2267-2281. DOI: 10.1016/j.ajpath.2020.08.002. [34] GaoJ, WeiT, HuangCL, et al. Sirtuin 3 governs autophagy-dependent glycolysis during Angiotensin Ⅱ-induced endothelial-to-mesenchymal transition[J]. FASEB J, 2020,34(12):16645-16661. DOI: 10.1096/fj.202001494R. [35] GaoSY, LiXH, JiangQY, et al. PKM2 promotes pulmonary fibrosis by stabilizing TGF-β 1receptor I and enhancing TGF-β 1 signaling[J]. Sci Adv, 2022,8(38):eabo0987. DOI: 10.1126/sciadv.abo0987. [36] VinaikR, BarayanD, AugerC, et al. Regulation of glycolysis and the Warburg effect in wound healing[J]. JCI Insight, 2020,5(17):e138949. DOI: 10.1172/jci.insight.138949. [37] ZhouMY, ChengML, HuangT, et al. Transforming growth factor beta-1 upregulates glucose transporter 1 and glycolysis through canonical and noncanonical pathways in hepatic stellate cells[J]. World J Gastroenterol, 2021,27(40):6908-6926. DOI: 10.3748/wjg.v27.i40.6908. [38] WangP, WangQF, YangX, et al. Targeting the glycolytic enzyme PGK1 to inhibit the Warburg effect: a new strategy for keloid therapy[J]. Plastic Reconstr Surg, 2023, 151(6): 970e-980e. DOI: 10.1097/PRS.0000000000010137. [39] MeiSY, XuQY, HuY, et al. Integrin β3-PKM2 pathway-mediated aerobic glycolysis contributes to mechanical ventilation-induced pulmonary fibrosis[J]. Theranostics, 2022,12(14):6057-6068. DOI: 10.7150/thno.72328. [40] LiQ, QinZL, NieFF, et al. Metabolic reprogramming in keloid fibroblasts: aerobic glycolysis and a novel therapeutic strategy[J]. Biochem Biophys Res Commun, 2018,496(2):641-647. DOI: 10.1016/j.bbrc.2018.01.068. [41] SchrufE, SchroederV, KuttruffCA, et al. Human lung fibroblast-to-myofibroblast transformation is not driven by an LDH5-dependent metabolic shift towards aerobic glycolysis[J]. Respir Res, 2019,20(1):87. DOI: 10.1186/s12931-019-1058-2. [42] WangFX, JiaY, LiMM, et al. Blockade of glycolysis-dependent contraction by oroxylin a via inhibition of lactate dehydrogenase-a in hepatic stellate cells[J]. Cell Commun Signal, 2019,17(1):11. DOI: 10.1186/s12964-019-0324-8. [43] LiuYZ, BaiF, LiuN, et al. Metformin improves lipid metabolism and reverses the Warburg effect in a canine model of chronic atrial fibrillation[J]. BMC Cardiovasc Disord, 2020,20(1):50. DOI: 10.1186/s12872-020-01359-7. [44] TangCJ, XuJ, YeHY, et al. Metformin prevents PFKFB3-related aerobic glycolysis from enhancing collagen synthesis in lung fibroblasts by regulating AMPK/mTOR pathway[J]. Exp Ther Med, 2021,21(6):581. DOI: 10.3892/etm.2021.10013. [45] YuHL, ZhuJB, ChangLY, et al. 3-Bromopyruvate decreased kidney fibrosis and fibroblast activation by suppressing aerobic glycolysis in unilateral ureteral obstruction mice model[J]. Life Sci, 2021,272:119206. DOI: 10.1016/j.lfs.2021.119206. [46] WangW, ZhangY, HuangWH, et al. Alamandine/MrgD axis prevents TGF-β 1-mediated fibroblast activation via regulation of aerobic glycolysis and mitophagy[J]. J Transl Med, 2023,21(1):24. DOI: 10.1186/s12967-022-03837-2. [47] FanN, ZhangXY, ZhaoW, et al. Covalent inhibition of pyruvate kinase M2 reprograms metabolic and inflammatory pathways in hepatic macrophages against non-alcoholic fatty liver disease[J]. Int J Biol Sci, 2022, 18(14): 5260-5275. DOI: 10.7150/ijbs.73890. -