Research advances on the role of adipokines in diabetic peripheral arterial diseases
-
摘要: 外周血管病变是糖尿病常见的并发症之一。目前尚未完全明确糖尿病外周血管病变的发病机制,且该病缺少有效的治疗手段和药物。脂肪因子对糖尿病及其并发症的发生发展有着深刻的影响,直接或间接地参与了糖尿病外周血管病变的进程。不同的脂肪因子或抑制血管病变的发生,或促进其发生,机制复杂且尚存在许多争议。脂肪因子有望成为治疗糖尿病外周血管病变的新靶点,值得进一步深入研究。该文主要对一些常见的脂肪因子和新型脂肪因子与糖尿病外周血管病变的关系进行综述,旨在为糖尿病外周血管病变的临床治疗提供新方法。Abstract: Peripheral arterial disease is one of the common complications of diabetes. At present, the pathogenesis of diabetic peripheral arterial diseases is not completely clear, and there is a lack of effective treatment methods and drugs. Adipokines have profound impact on the occurrence and development of diabetes mellitus and its complications, and are directly or indirectly involved in the progression of diabetic peripheral arterial diseases. Different adipokines may inhibit or promote the occurrence of vascular diseases with the mechanisms that are complex and controversial. Adipokines are expected to be a new target for the treatment of diabetic peripheral arterial disease, which is worthy of further study. This article mainly reviews the relationship between some common adipokines and new adipokines and diabetic vascular disease, aiming to provide new methods for the clinical treatment of diabetic peripheral arterial disease.
-
Key words:
- Diabetes mellitus /
- Peripheral vascular diseases /
- Adipokines /
- Drug interactions
-
参考文献
(45) [1] ArgenteriA, de DonatoG, SetacciF, et al. History of the diagnosis and treatment of critical limb ischemia and diabetic foot[J]. Semin Vasc Surg, 2018,31(2/3/4):25-42. DOI: 10.1053/j.semvascsurg.2019.01.006. [2] 魏在荣, 简扬. 糖尿病足创面外科治疗模式探讨[J].中华烧伤与创面修复杂志,2023,39(4):305-310. DOI: 10.3760/cma.j.cn501225-20230213-00044. [3] SoyoyeDO, AbiodunOO, IkemRT, et al. Diabetes and peripheral artery disease: a review[J]. World J Diabetes, 2021,12(6):827-838. DOI: 10.4239/wjd.v12.i6.827. [4] RupnickMA, PanigrahyD, ZhangCY, et al. Adipose tissue mass can be regulated through the vasculature[J]. Proc Natl Acad Sci U S A, 2002,99(16):10730-10735. DOI: 10.1073/pnas.162349799. [5] ZukPA, ZhuM, MizunoH, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, 2001,7(2):211-228. DOI: 10.1089/107632701300062859. [6] 王颖, 佟俊旺, 盛佳曦, 等. 血清瘦素、25羟维生素D水平与2型糖尿病下肢血管病变关系的研究[J].中国糖尿病杂志,2016,24(4):328-330. DOI: 10.3969/j.issn.1006-6187.2016.04.010. [7] 籍胤玺, 金毅, 金文波. 糖尿病足病患者瘦素水平与血管内皮舒张功能受损的相关性研究[J].中国糖尿病杂志,2018,26(11):900-904. DOI: 10.3969/j.issn.1006-6187.2018.11.005. [8] 陈岳林, 沈粤春. 瘦素对大鼠血管张力的影响及机制研究[J].中国心血管病研究,2015,13(8):754-759. DOI: 10.3969/j.issn.1672-5301.2015.08.021. [9] ZhangT, YangP, LiT, et al. Leptin expression in human epicardial adipose tissue is associated with local coronary atherosclerosis[J]. Med Sci Monit, 2019,25:9913-9922. DOI: 10.12659/MSM.918390. [10] Pérez-PérezA, Sánchez-JiménezF, Vilariño-GarcíaT, et al. Role of leptin in inflammation and vice versa[J]. Int J Mol Sci, 2020,21(16): 5887.DOI: 10.3390/ijms21165887. [11] BecerrilS, RodríguezA, CatalánV, et al. Functional relationship between leptin and nitric oxide in metabolism[J]. Nutrients, 2019,11(9): 21-29.DOI: 10.3390/nu11092129. [12] 杜芸辉, 马新亮. 脂联素减轻糖尿病血管内皮损伤的保护机制[J].生理学报,2019,71(3):485-490. DOI: 10.13294/j.aps.2019.0041. [13] 李雅嘉, 李卿慧, 李强翔, 等. 球型脂联素对高糖环境下脐静脉内皮细胞增殖及VEGF表达的影响[J].中国老年学杂志,2022,42(15):3775-3777. DOI: 10.3969/j.issn.1005-9202.2022.15.042. [14] DuY, LiR, LauWB, et al. Adiponectin at physiologically relevant concentrations enhances the vasorelaxative effect of acetylcholine via Cav-1/AdipoR-1 signaling[J]. PLoS One, 2016,11(3):e0152247. DOI: 10.1371/journal.pone.0152247. [15] LiuGZ, LiangB, LauWB, et al. High glucose/High Lipids impair vascular adiponectin function via inhibition of caveolin-1/AdipoR1 signalsome formation[J]. Free Radic Biol Med, 2015,89:473-485. DOI: 10.1016/j.freeradbiomed.2015.09.005. [16] DengG, LongY, YuYR, et al. Adiponectin directly improves endothelial dysfunction in obese rats through the AMPK-eNOS Pathway[J]. Int J Obes (Lond), 2010,34(1):165-171. DOI: 10.1038/ijo.2009.205. [17] YangM, ZhouX, XuJ, et al. Association of serum chemerin and inflammatory factors with type 2 diabetes macroangiopathy and waist-to-stature ratio[J]. Bosn J Basic Med Sci, 2019,19(4):328-335. DOI: 10.17305/bjbms.2019.4002. [18] NevesKB, Nguyen Dinh CatA, Alves-LopesR, et al. Chemerin receptor blockade improves vascular function in diabetic obese mice via redox-sensitive and Akt-dependent pathways[J]. Am J Physiol Heart Circ Physiol, 2018,315(6):H1851-H1860. DOI: 10.1152/ajpheart.00285.2018. [19] DimitriadisGK, KaurJ, AdyaR, et al. Chemerin induces endothelial cell inflammation: activation of nuclear factor-kappa beta and monocyte-endothelial adhesion[J]. Oncotarget, 2018,9(24):16678-16690. DOI: 10.18632/oncotarget.24659. [20] YamawakiH, KameshimaS, UsuiT, et al. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells[J]. Biochem Biophys Res Commun, 2012,423(1):152-157. DOI: 10.1016/j.bbrc.2012.05.103. [21] 王奕, 周勇, 孟祥英, 等. 血清血管生成素样蛋白4和血管内皮生长因子与2型糖尿病下肢动脉病变的相关性研究[J].中国综合临床,2020,36(3):228-232. DOI: 10.3760/cma.j.cn121361-20190928-00010. [22] 汪蓉, 胡雪剑, 任建功. 血管生成素样蛋白4与糖尿病及糖尿病肾脏疾病关系的研究进展[J].中国糖尿病杂志,2023,31(3):229-231. DOI: 10.3969/j.issn.1006-6187.2023.03.015. [23] 赵梁燕, 高倩, 陈将南, 等. 2 型糖尿病患者外周血液指标的变化及其与颈动脉硬化的相关性[J].中国临床保健杂志,2018,21(3):360-363. DOI: 10.3969/J.issn.1672-6790.2018.03.020. [24] NaiemianS, NaeemipourM, ZareiM, et al. Serum concentration of asprosin in new-onset type 2 diabetes[J]. Diabetol Metab Syndr, 2020,12:65. DOI: 10.1186/s13098-020-00564-w. [25] 崔阳, 王维, 李丽疆, 等. 白脂素、趋化素与2型糖尿病大血管病变的相关性[J].微量元素与健康研究,2022,39(2):12-13,19. [26] ZhangL, ChenC, ZhouN, et al. Circulating asprosin concentrations are increased in type 2 diabetes mellitus and independently associated with fasting glucose and triglyceride[J]. Clin Chim Acta, 2019,489:183-188. DOI: 10.1016/j.cca.2017.10.034. [27] YouM, LiuY, WangB, et al. Asprosin induces vascular endothelial-to-mesenchymal transition in diabetic lower extremity peripheral artery disease[J]. Cardiovasc Diabetol, 2022,21(1):25. DOI: 10.1186/s12933-022-01457-0. [28] JungTW, PyunDH, KimTJ, et al. Meteorin-like protein (METRNL)/IL-41 improves LPS-induced inflammatory responses via AMPK or PPARδ-mediated signaling pathways[J]. Adv Med Sci, 2021,66(1):155-161. DOI: 10.1016/j.advms.2021.01.007. [29] 姜艳, 岳月仪, 吴滨, 等. 转化生长因子-β和镍纹样蛋白与2型糖尿病大血管病变的相关性[J].实用临床医药杂志,2023,27(5):92-96,103. DOI: 10.7619/jcmp.20222865. [30] 郑斯莉 Metrnl对血管张力及动脉粥样硬化的影响及机制研究 上海 海军军医大学 2018 郑斯莉. Metrnl对血管张力及动脉粥样硬化的影响及机制研究[D]. 上海:海军军医大学, 2018.
[31] BahtGS, BarejaA, LeeDE, et al. Meteorin-like facilitates skeletal muscle repair through a Stat3/IGF-1 mechanism[J]. Nat Metab, 2020,2(3):278-289. DOI: 10.1038/s42255-020-0184-y. [32] 郑光禄, 崔香芝. 2型糖尿病合并PDA患者炎性因子与血浆网膜素-1的相关性研究[J].河南医学研究,2018,27(23):4237-4240. DOI: 10.3969/j.issn.1004-437X.2018.23.005. [33] 戴素俊, 朱玉胜, 施明美. 白细胞介素-18、白细胞介素-6、血浆网膜素-1与2型糖尿病合并下肢血管病变的相关性[J].血管与腔内血管外科杂志,2022,8(8):1003-1007. DOI: 10.19418/j.cnki.issn2096-0646.2022.08.22. [34] NiersmannC, Carstensen-KirbergM, MaalmiH, et al. Higher circulating omentin is associated with increased risk of primary cardiovascular events in individuals with diabetes[J]. Diabetologia, 2020,63(2):410-418. DOI: 10.1007/s00125-019-05017-2. [35] Martínez-MicaeloN, Rodríguez-CalvoR, Guaita-EsteruelasS, et al. Extracellular FABP4 uptake by endothelial cells is dependent on cytokeratin 1 expression[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019,1864(3):234-244. DOI: 10.1016/j.bbalip.2018.11.011. [36] ZhangXZ, TuWJ, WangH, et al. Circulating serum fatty acid-binding protein 4 levels predict the development of diabetic retinopathy in type 2 diabetic patients[J]. Am J Ophthalmol, 2018,187:71-79. DOI: 10.1016/j.ajo.2017.12.022. [37] BurakMF, InouyeKE, WhiteA, et al. Development of a therapeutic monoclonal antibody that targets secreted fatty acid-binding protein aP2 to treat type 2 diabetes[J]. Sci Transl Med, 2015,7(319):319ra205. DOI: 10.1126/scitranslmed.aac6336. [38] HeY, DouH, GaoD, et al. Identification of new dual FABP4/5 inhibitors based on a naphthalene-1-sulfonamide FABP4 inhibitor[J]. Bioorg Med Chem, 2019,27(19):115015. DOI: 10.1016/j.bmc.2019.07.031. [39] YanZ, CaoX, WangC, et al. C1q/tumor necrosis factor-related protein-3 improves microvascular endothelial function in diabetes through the AMPK/eNOS/NO· signaling pathway[J]. Biochem Pharmacol, 2022,195:114745. DOI: 10.1016/j.bcp.2021.114745. [40] 袁颜玉, 郭青玉. 脂肪因子与糖尿病内皮功能障碍的研究进展[J].医学研究生学报,2021,34(3):293-298. DOI: 10.16571/j.cnki.1008-8199.2021.03.015. [41] ChenK, ZhaoXL, LiLB, et al. miR-503/Apelin-12 mediates high glucose-induced microvascular endothelial cells injury via JNK and p38MAPK signaling pathway[J]. Regen Ther, 2020,14:111-118. DOI: 10.1016/j.reth.2019.12.002. [42] LiuM, LiH, ZhouQ, et al. ROS-Autophagy pathway mediates monocytes-human umbilical vein endothelial cells adhesion induced by apelin-13[J]. J Cell Physiol, 2018,233(10):6839-6850. DOI: 10.1002/jcp.26554. [43] 李海霞, 魏静, 哈小琴. 趋化素与代谢性疾病的研究现状[J].中国医药生物技术,2020,15(5):508-511. DOI: 10.3969/j.issn.1673-713X.2020.05.012. [44] 周洁 脂联素、瘦素与糖尿病肢体动脉闭塞症中医证型的相关性研究 济南 山东中医药大学 2022 周洁. 脂联素、瘦素与糖尿病肢体动脉闭塞症中医证型的相关性研究[D]. 济南:山东中医药大学, 2022.
[45] 吴燕, 杨俊杰, 叶澄健, 等. 血清脂联素、脂肪细胞脂肪酸结合蛋白水平与糖尿病大血管病变的关联性研究[J].广州医科大学学报,2015, 43(3): 87-89.DOI: 10.3969/j.issn.2095-9664.2015.03.021.
计量
- 文章访问数: 88
- HTML全文浏览量: 15
- PDF下载量: 16
- 被引次数: 0