[1] |
RodriguesM, KosaricN, BonhamCA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019, 99(1): 665-706. DOI: 10.1152/physrev.00067.2017.
|
[2] |
SalmenaL,PolisenoL,TayY,et al.A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?[J].Cell,2011,146(3):353-358.DOI: 10.1016/j.cell.2011.07.014.
|
[3] |
XuYX,PuSD,LiX,et al.Exosomal ncRNAs: novel therapeutic target and biomarker for diabetic complications[J].Pharmacol Res,2022,178:106135.DOI: 10.1016/j.phrs.2022.106135.
|
[4] |
PathanM,FonsekaP,ChittiSV,et al.Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles[J].Nucleic Acids Res,2019,47(D1):D516-D519.DOI: 10.1093/nar/gky1029.
|
[5] |
KeerthikumarS, ChisangaD, AriyaratneD, et al. ExoCarta: a web-based compendium of exosomal cargo[J]. J Mol Biol, 2016, 428(4): 688-692. DOI: 10.1016/j.jmb.2015.09.019.
|
[6] |
TanJY,MarquesAC.The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation[J].Adv Genet,2014,85:149-199.DOI: 10.1016/B978-0-12-800271-1.00003-2.
|
[7] |
ShenJH,ZhaoX,ZhongYX,et al.Exosomal ncRNAs: the pivotal players in diabetic wound healing[J].Front Immunol,2022,13:1005307.DOI: 10.3389/fimmu.2022.1005307.
|
[8] |
KoppF, MendellJT. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3): 393-407. DOI: 10.1016/j.cell.2018.01.011.
|
[9] |
PatopIL,WüstS,S.PastKadener, present, and future of circRNAs[J].EMBO J,2019,38(16):e100836.DOI: 10.15252/embj.2018100836.
|
[10] |
SalzmanJ. Circular RNA expression: its potential regulation and function[J]. Trends Genet, 2016, 32(5): 309-316. DOI: 10.1016/j.tig.2016.03.002.
|
[11] |
RongDW,SunHD,LiZX,et al.An emerging function of circRNA-miRNAs-mRNA axis in human diseases[J].Oncotarget,2017,8(42):73271-73281.DOI: 10.18632/oncotarget.19154.
|
[12] |
HouSQ, OuyangM, BrandmaierA, et al. PTEN in the maintenance of genome integrity: from DNA replication to chromosome segregation[J]. Bioessays, 2017, 39(10): 1700082. DOI: 10.1002/bies.201700082.
|
[13] |
LiB, LuanS, ChenJ, et al. The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via microRNA-152-3p[J]. Mol Ther Nucleic Acids, 2020, 19: 814-826. DOI: 10.1016/j.omtn.2019.11.034.
|
[14] |
KuangLW,ZhangCC,LiBH,et al.Human keratinocyte-derived exosomal MALAT1 promotes diabetic wound healing by upregulating MFGE8 via microRNA-1914-3p[J].Int J Nanomedicine,2023,18:949-970.DOI: 10.2147/IJN.S399785.
|
[15] |
HormoziM,BaharvandP.Achillea biebersteinni Afan may inhibit scar formation: in vitro study[J].Mol Genet Genomic Med,2019,7(5):e640.DOI: 10.1002/mgg3.640.
|
[16] |
QianL, PiL, FangBR, et al. Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis[J]. Lab Invest, 2021, 101(9): 1254-1266. DOI: 10.1038/s41374-021-00611-8.
|
[17] |
TaoSC, RuiBY, WangQY, et al. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds[J]. Drug Deliv, 2018, 25(1): 241-255. DOI: 10.1080/10717544.2018.1425774.
|
[18] |
HeL, ZhuC, JiaJ, et al. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway[J]. Biosci Rep, 2020, 40(5): BSR20192549. DOI: 10.1042/BSR20192549.
|
[19] |
PiL, YangL, FangBR, et al. LncRNA MALAT1 from human adipose-derived stem cell exosomes accelerates wound healing via miR-378a/FGF2 axis[J]. Regen Med, 2022, 17(9): 627-641. DOI: 10.2217/rme-2021-0170.
|
[20] |
ChenCH, WangQH, LiDB, et al. MALAT1 participates in the role of platelet-rich plasma exosomes in promoting wound healing of diabetic foot ulcer[J]. Int J Biol Macromol, 2023, 238: 124170. DOI: 10.1016/j.ijbiomac.2023.124170.
|
[21] |
ZhuJL, QuanHG. Adipose-derived stem cells-derived exosomes facilitate cutaneous wound healing by delivering XIST and restoring discoidin domain receptor 2[J]. Cytokine, 2022, 158: 155981. DOI: 10.1016/j.cyto.2022.155981.
|
[22] |
AnY, HuangF, TanXJ, et al. Exosomes of adipose tissue-derived stem cells promote wound healing by sponging miR-17-5p and inducing autophagy protein Ulk1[J]. Plast Reconstr Surg, 2023, 151(5): 1016-1028. DOI: 10.1097/PRS.0000000000010083.
|
[23] |
BeheraJ, KumarA, VoorMJ, et al. Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice[J]. Theranostics, 2021, 11(16): 7715-7734. DOI: 10.7150/thno.58410.
|
[24] |
HanZF, CaoJH, LiuZY, et al. Exosomal lncRNA KLF3-AS1 derived from bone marrow mesenchymal stem cells stimulates angiogenesis to promote diabetic cutaneous wound healing[J]. Diabetes Res Clin Pract, 2022, 183: 109126. DOI: 10.1016/j.diabres.2021.109126.
|
[25] |
ShyuKG, WangBW, PanCM, et al. Hyperbaric oxygen boosts long noncoding RNA MALAT1 exosome secretion to suppress microRNA-92a expression in therapeutic angiogenesis[J]. Int J Cardiol, 2019, 274: 271-278. DOI: 10.1016/j.ijcard.2018.09.118.
|
[26] |
陈鹏,杨凤英,顾志鹏,等.抗氧化水凝胶的研究进展[J].功能高分子学报,2021,34(2):182-194.DOI: 10.14133/j.cnki.1008-9357.20201213001.
|
[27] |
ZhuZS, ChenB, PengL, et al. Blockade of LINC01605-enriched exosome generation in M2 macrophages impairs M2 macrophage-induced proliferation, migration, and invasion of human dermal fibroblasts[J]. Int J Immunopathol Pharmacol, 2021, 35: 20587384211016724. DOI: 10.1177/20587384211016724.
|
[28] |
ChenJL, ZhouRP, LiangYM, et al. Blockade of lncRNA-ASLNCS5088-enriched exosome generation in M2 macrophages by GW4869 dampens the effect of M2 macrophages on orchestrating fibroblast activation[J]. FASEB J, 2019, 33(11): 12200-12212. DOI: 10.1096/fj.201901610.
|
[29] |
ShiRF, JinYP, ZhaoSM, et al. Hypoxic ADSC-derived exosomes enhance wound healing in diabetic mice via delivery of circ-Snhg11 and induction of M2-like macrophage polarization[J]. Biomed Pharmacother, 2022, 153: 113463. DOI: 10.1016/j.biopha.2022.113463.
|
[30] |
HuN, CaiZW, JiangXD, et al. Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing[J]. Acta Biomater, 2023, 157: 175-186. DOI: 10.1016/j.actbio.2022.11.057.
|
[31] |
XiangYW, KuaiL, RuY, et al. Transcriptional profiling and circRNA-miRNA-mRNA network analysis identify the biomarkers in Sheng-ji Hua-yu formula treated diabetic wound healing[J]. J Ethnopharmacol, 2021, 268: 113643. DOI: 10.1016/j.jep.2020.113643.
|
[32] |
LiQ, GuoL, WangJ, et al. Exosomes derived from Nr-CWS pretreated MSCs facilitate diabetic wound healing by promoting angiogenesis via the circIARS1/miR-4782-5p/VEGFA axis[J]. Chin J Nat Med, 2023, 21(3): 172-184. DOI: 10.1016/S1875-5364(23)60419-4.
|
[33] |
LiangZH, LinSS, PanNF, et al. UCMSCs‐derived exosomal circHIPK3 promotes ulcer wound angiogenesis of diabetes mellitus via miR‐20b‐5p/Nrf2/VEGFA axis[J]. Diabet Med, 2023, 40(2): e14968. DOI: 10.1111/dme.14968.
|
[34] |
WangY, ZhaoRZ, LiuWW, et al. Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway[J]. Oxid Med Cell Longev, 2019, 2019: 7954657. DOI: 10.1155/2019/7954657.
|
[35] |
LiangZH, PanNF, LinSS, et al. Exosomes from mmu_circ_0001052-modified adipose-derived stem cells promote angiogenesis of DFU via miR-106a-5p and FGF4/p38MAPK pathway[J]. Stem Cell Res Ther, 2022, 13(1): 336. DOI: 10.1186/s13287-022-03015-7.
|
[36] |
ShiRF, JinYP, HuWW, et al. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy[J]. Am J Physiol Cell Physiol, 2020, 318(5): C848-C856. DOI: 10.1152/ajpcell.00041.2020.
|