留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米银涂层可吸收缝线对小鼠皮肤切口缝合线道的远期作用

何峰 杜娟 宋岩彪 叶茂 魏延栋 刘雪来

何峰, 杜娟, 宋岩彪, 等. 纳米银涂层可吸收缝线对小鼠皮肤切口线道的远期作用[J]. 中华烧伤与创面修复杂志, 2024, 40(12): 1-9. DOI: 10.3760/cma.j.cn501225-20231007-00104.
引用本文: 何峰, 杜娟, 宋岩彪, 等. 纳米银涂层可吸收缝线对小鼠皮肤切口线道的远期作用[J]. 中华烧伤与创面修复杂志, 2024, 40(12): 1-9. DOI: 10.3760/cma.j.cn501225-20231007-00104.
He Feng,Du Juan,Song Yanbiao,et al.Long term efficacy of absorbable sutures coated with silver nanoparticles on the suture tract of skin wounds in mice[J].Chin J Burns Wounds,2024,40(12):1-9.DOI: 10.3760/cma.j.cn501225-20231007-00104.
Citation: He Feng,Du Juan,Song Yanbiao,et al.Long term efficacy of absorbable sutures coated with silver nanoparticles on the suture tract of skin wounds in mice[J].Chin J Burns Wounds,2024,40(12):1-9.DOI: 10.3760/cma.j.cn501225-20231007-00104.

纳米银涂层可吸收缝线对小鼠皮肤切口缝合线道的远期作用

doi: 10.3760/cma.j.cn501225-20231007-00104
基金项目: 

北京市自然科学基金面上项目 7222015

北京市中医药科技发展资金项目 JJ-2020-50

首都儿科研究所所级课题 LCYJ-2023-07

详细信息
    通讯作者:

    刘雪来,Email:liuxuelai_steven@163.com

Long term efficacy of absorbable sutures coated with silver nanoparticles on the suture tract of skin wounds in mice

Funds: 

General Program of Beijing Natural Science Foundation 7222015

Fund for Beijing Science & Technology Development of Traditional Chinese Medicine JJ-2020-50

Research Foundation of Capital Institute of Pediatrics LCYJ-2023-07

More Information
  • 摘要:   目的  探讨纳米银涂层可吸收缝线对小鼠皮肤切口缝合线道的远期作用。  方法  该研究为实验研究。将18只10~12周龄雌雄各半BALB/c小鼠,按照随机数字表法分为普通薇乔线组、抗生素薇乔线组和纳米银薇乔线组,每组6只,雌雄各半。于所有小鼠背部制备皮肤切口后,对普通薇乔线组、抗生素薇乔线组和纳米银薇乔线组小鼠皮肤切口分别采用可吸收薇乔线、三氯生抗菌涂层可吸收薇乔线和纳米银涂层可吸收薇乔线行皮内连续缝合。术后25 d,采集切口缝合线道皮肤组织,行免疫组织化学染色观测小鼠切口缝合线道F4/80、白细胞介素6(IL-6)和肿瘤坏死因子α(TNF-α)阳性面积百分比,行原位末端标记(TUNEL)染色观测小鼠切口缝合线道TUNEL染色阳性面积百分比,行Masson染色观察小鼠切口缝合线道胶原纤维形成情况,行免疫组织化学染色观测小鼠切口缝合线道组织蛋白酶K阳性面积百分比。以上实验中样本数均为6。  结果  术后25 d,纳米银薇乔线组小鼠切口缝合线道F4/80、IL-6及TNF-α阳性面积百分比[(19.2±1.6)%、(20.2±1.7)%、(16.0±1.6)%]均明显低于普通薇乔线组[(100±6.4)%、(100±7.6)%、(100±9.6)%]和抗生素薇乔线组[(47.2±3.2)%、(53.8±5.0)%、43.2%,P<0.05],抗生素薇乔线组小鼠切口缝合线道F4/80、IL-6及TNF-α阳性面积百分比均明显低于普通薇乔线组(P<0.05)。术后25 d,纳米银薇乔线组小鼠切口缝合线道TUNEL染色阳性面积百分比明显低于普通薇乔线组和抗生素薇乔线组(P值均<0.05),抗生素薇乔线组小鼠切口缝合线道TUNEL染色阳性面积百分比明显高于普通薇乔线组(P<0.05)。术后25 d,普通薇乔线组小鼠切口缝合线道胶原纤维沉积不明显,抗生素薇乔线组小鼠切口缝合线道无明显胶原纤维,纳米银薇乔线组小鼠切口缝合线道胶原纤维致密程度最高且排列有序。术后25 d,纳米银薇乔线组小鼠切口缝合线道组织蛋白酶K阳性面积百分比明显低于普通薇乔线组和抗生素薇乔线组(P值均<0.05),抗生素薇乔线组小鼠切口缝合线道组织蛋白酶K阳性面积百分比明显低于普通薇乔线组(P<0.05)。  结论  在小鼠切口缝合线道,纳米银薇乔线的远期抗炎疗效优于三氯生抗菌涂层可吸收薇乔线和普通可吸收薇乔线;同时,采用纳米银薇乔线缝合的小鼠切口缝合线道细胞凋亡减少,胶原纤维沉积显著,迟发型超敏反应最弱,说明纳米银薇乔线具备潜在的临床应用价值。

     

  • 参考文献(53)

    [1] WongKK,LiuXL.Nanomedicine: a primer for surgeons[J].Pediatr Surg Int,2012,28(10):943-951.DOI: 10.1007/s00383-012-3162-y.
    [2] GaikwadS,BirlaS,IngleAP,et al.Superior in vivo wound-healing activity of mycosynthesized silver nanogel on different wound models in rat[J].Front Microbiol,2022,13:881404.DOI: 10.3389/fmicb.2022.881404.
    [3] ChoudhuryH, PandeyM, LimYQ,et al.Silver nanoparticles: advanced and promising technology in diabetic wound therapy[J].Mater Sci Eng C Mater Biol Appl,2020,112:110925. DOI: 10.1016/j.msec.2020.110925.
    [4] 刘雪来,宋岩彪,张创,等.纳米银涂层可吸收线吻合小鼠肠壁近期抗炎疗效的实验研究[J].中国微创外科杂志,2018,18(9):825-829.DOI: 10.3969/j.issn.1009-6604.2018.09.015.
    [5] LiuX,LeePY,HoCM,et al.Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing[J].ChemMedChem,2010,5(3):468-475.DOI: 10.1002/cmdc.200900502.
    [6] ZhangS,LiuX,WangH,et al.Silver nanoparticle-coated suture effectively reduces inflammation and improves mechanical strength at intestinal anastomosis in mice[J].J Pediatr Surg,2014,49(4):606-613.DOI: 10.1016/j.jpedsurg.2013.12.012.
    [7] LiuX,GaoP,DuJ,et al.Long-term anti-inflammatory efficacy in intestinal anastomosis in mice using silver nanoparticle-coated suture[J].J Pediatr Surg,2017,52(12):2083-2087.DOI: 10.1016/j.jpedsurg.2017.08.026.
    [8] DabaghS,HarisSA,IsfahaniBK,et al.Silver-decorated and silica-capped magnetite nanoparticles with effective antibacterial activity and reusability[J].ACS Appl Bio Mater,2023,6(6):2266-2276.DOI: 10.1021/acsabm.3c00122.
    [9] RahmanL,SarwarY,KhaliqS,et al.Surfactin-conjugated silver nanoparticles as an antibacterial and antibiofilm agent against Pseudomonas aeruginosa[J].ACS Appl Mater Interfaces,2023,15(37):43321-43331.DOI: 10.1021/acsami.3c07071.
    [10] JoyaYF,LiuZ,JoyaKS,et al.Preparation and antibacterial properties of laser-generated silver-anatase nanocomposite film against Escherichia coli and Staphylococcus aureus[J].Nanotechnology,2012,23(49):495708.DOI: 10.1088/0957-4484/23/49/495708.
    [11] LeachGA,ChaffinHM,BristyanMC,et al.External knot for running intradermal stitch[J].J Cutan Aesthet Surg,2020,13(1):57-58.DOI: 10.4103/JCAS.JCAS_83_19.
    [12] KonovalovA,TlisovaM,GadzhiagaevV,et al."Unshaved intradermal running suture for elective cranial neurovascular surgeries"[J].World Neurosurg,2023,171:139-143.DOI: 10.1016/j.wneu.2023.01.001.
    [13] 刘雪来,宋岩彪,单颖君,等.脱蜡丝线与传统丝线介导腹壁线结周围炎症反应的实验研究[J].发育医学电子杂志,2018,6(3):176-181.DOI: 10.3969/j.issn.2095-5340.2018.03.009.
    [14] 刘雪来,宋岩彪,李龙,等.脱蜡丝线线结在小鼠腹壁不同解剖层次诱导早期局部免疫应答的组织学研究[J].发育医学电子杂志,2020,8(2):168-172.DOI: 10.3969/j.issn.2095-5340.2020.02.014.
    [15] 严珍珍,王雨翔,张停琳,等.负载银纳米颗粒小球藻的明胶/聚乙二醇水凝胶的性能及其对小鼠全层皮肤缺损感染创面愈合的作用[J].中华烧伤与创面修复杂志,2024,40(1):33-42.DOI: 10.3760/cma.j.cn501225-20231020-00126.
    [16] KehribarL,AydınM,CoşkunHS,et al.Silver nanoparticles enhance the antibacterial effect of antibiotic-loaded bone cement[J].Cureus,2023,15(2):e34992.DOI: 10.7759/cureus.34992.
    [17] ChaiG,WangN,XuM,et al.Poly (vinyl alcohol)/sodium alginate/carboxymethyl chitosan multifunctional hydrogel loading HKUST-1 nanoenzymes for diabetic wound healing[J].Int J Biol Macromol,2024,268(Pt 2):131670.DOI: 10.1016/j.ijbiomac.2024.131670.
    [18] KwanKH,LiuX,ToMK,et al.Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing[J].Nanomedicine,2011,7(4):497-504.DOI: 10.1016/j.nano.2011.01.003.
    [19] 魏添,高凯.硒和硒纳米颗粒在脊髓损伤治疗方面的研究进展[J].国际骨科学杂志,2024,45(3):179-182.DOI: 10.3969/j.issn.1673-7083.2024.03.007.
    [20] PistonesiDB,BelénF,RusoJM,et al.NIR-responsive nano-holed titanium alloy surfaces: a photothermally activated antimicrobial biointerface[J].J Mater Chem B,2024,12(36):8993-9004.DOI: 10.1039/d4tb01307g.
    [21] WongKK,CheungSO,HuangL,et al.Further evidence of the anti-inflammatory effects of silver nanoparticles[J].ChemMedChem,2009,4(7):1129-1135.DOI: 10.1002/cmdc.200900049.
    [22] KumarSSD, RajendranNK, HoureldNN, et al.Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications[J].Int J Biol Macromol,2018,115:165-175.DOI: 10.1016/j.ijbiomac.2018.04.003.
    [23] ShahA,Ali BuabeidM,ArafaEA,et al.The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin[J].Int J Pharm,2019,564:22-38.DOI: 10.1016/j.ijpharm.2019.04.046.
    [24] TarushaL,PaolettiS,TravanA,et al.Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds[J].J Mater Sci Mater Med,2018,29(3):22.DOI: 10.1007/s10856-018-6027-7.
    [25] MengX,SunS,GongC,et al.Ag-doped metal-organic frameworks' heterostructure for sonodynamic therapy of deep-seated cancer and bacterial infection[J/OL].ACS Nano,2022(2022-12-30)[2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/36583572/.DOI:10.1021/acsnano.2c08687.[published online ahead of print].
    [26] QiX,HuangY,YouS,et al.Engineering robust Ag-decorated polydopamine nano-photothermal platforms to combat bacterial infection and prompt wound healing[J].Adv Sci (Weinh),2022,9(11):e2106015.DOI: 10.1002/advs.202106015.
    [27] QiaoY,HeJ,ChenW,et al.Light-activatable synergistic therapy of drug-resistant bacteria-infected cutaneous chronic wounds and nonhealing keratitis by cupriferous hollow nanoshells[J].ACS Nano,2020,14(3):3299-3315.DOI: 10.1021/acsnano.9b08930.
    [28] SongGJ,ChoiYS,HwangHS,et al.Silver-composited polydopamine nanoparticles: antibacterial and antioxidant potential in nanocomposite hydrogels[J].Gels,2023,9(3):183.DOI: 10.3390/gels9030183.
    [29] ChangR,ZhaoD,ZhangC,et al.Nanocomposite multifunctional hyaluronic acid hydrogel with photothermal antibacterial and antioxidant properties for infected wound healing[J].Int J Biol Macromol,2023,226:870-884.DOI: 10.1016/j.ijbiomac.2022.12.116.
    [30] WuC,ZhangG,XiaT,et al.Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities[J].Mater Sci Eng C Mater Biol Appl,2015,55:155-165.DOI: 10.1016/j.msec.2015.05.032.
    [31] PhamTN,JiangYS,SuCF,et al.In situ formation of silver nanoparticles-contained gelatin-PEG-dopamine hydrogels via enzymatic cross-linking reaction for improved antibacterial activities[J].Int J Biol Macromol,2020,146:1050-1059.DOI: 10.1016/j.ijbiomac.2019.09.230.
    [32] ZhangK,LuiVCH,ChenY,et al.Delayed application of silver nanoparticles reveals the role of early inflammation in burn wound healing[J].Sci Rep,2020,10(1):6338.DOI: 10.1038/s41598-020-63464-z.
    [33] SaidMM,RehanM,El-SheikhSM,et al.Multifunctional hydroxyapatite/silver nanoparticles/cotton gauze for antimicrobial and biomedical applications[J].Nanomaterials (Basel),2021,11(2):429.DOI: 10.3390/nano11020429.
    [34] BasovA,DzhimakS,SokolovM,et al.Changes in number and antibacterial activity of silver nanoparticles on the surface of suture materials during cyclic freezing[J].Nanomaterials (Basel),2022,12(7):1164.DOI: 10.3390/nano12071164.
    [35] 江纯静,杨成雪,喻正文,等.金属离子抗炎作用的分子机制[J].中国组织工程研究,2024,28(10):1626-1633.DOI: 10.12307/2024.267.
    [36] 刘雪来.纳米生物载体在实体瘤治疗研究中的应用[J].中华小儿外科杂志,2012,33(9):705-709.DOI: 10.3760/cma.j.issn.0253-3006.2012.09.016.
    [37] WuY,ZhangJ,LinA,et al.Immunomodulatory poly(L-lactic acid) nanofibrous membranes promote diabetic wound healing by inhibiting inflammation, oxidation and bacterial infection[J/OL].Burns Trauma,2024,12:tkae009[2024-11-25]. https://pubmed.ncbi.nlm.nih.gov/38841099/.DOI: 10.1093/burnst/tkae009.
    [38] AlmohamadZ,FahmyR,FaragA,et al.Innovative approach: utilizing silver nanoparticles sheet for improved rabbit cecal anastomosis healing[J].Front Vet Sci,2024,11:1264414.DOI: 10.3389/fvets.2024.1264414.
    [39] ZhaoX,SuS,WuC,et al.High-throughput screening-based design of multifunctional natural polyphenol nano-vesicles to accelerate diabetic wound healing[J].J Nanobiotechnology,2024,22(1):725.DOI: 10.1186/s12951-024-02950-2.
    [40] WangY,ChenC,HeC,et al.Quaternized chitosan-based biomimetic nanozyme hydrogels with ROS scavenging, oxygen generating, and antibacterial capabilities for diabetic wound repair[J].Carbohydr Polym,2025,348(Pt B):122865.DOI: 10.1016/j.carbpol.2024.122865.
    [41] Al-SawareesDK,DarwishRM,Abu-ZuraykR,et al.Assessing silver nanoparticle and antimicrobial combinations for antibacterial activity and biofilm prevention on surgical sutures[J].J Appl Microbiol,2024,135(4):lxae063.DOI: 10.1093/jambio/lxae063.
    [42] LiH,DuanS,LiL,et al.Bio-responsive sliver peroxide-nanocarrier serves as broad-spectrum metallo-β-lactamase inhibitor for combating severe pneumonia[J].Adv Mater,2024,36(11):e2310532.DOI: 10.1002/adma.202310532.
    [43] ZhuJ,WenT,QuS,et al.G-quadruplex/hemin DNAzyme-functionalized silver nanoclusters with synergistic antibacterial and wound healing capabilities for infected wound management[J].Small,2024,20(8):e2307220.DOI: 10.1002/smll.202307220.
    [44] QiM,WangX,ChenJ,et al.Transformation, absorption and toxicological mechanisms of silver nanoparticles in the gastrointestinal tract following oral exposure[J].ACS Nano,2023,17(10):8851-8865.DOI: 10.1021/acsnano.3c00024.
    [45] FuX,RehmanU,WeiL,et al.Silver-dendrimer nanocomposite as emerging therapeutics in anti-bacteria and beyond[J].Drug Resist Updat,2023,68:100935.DOI: 10.1016/j.drup.2023.100935.
    [46] GravanteG,CarusoR,SorgeR,et al.Nanocrystalline silver: a systematic review of randomized trials conducted on burned patients and an evidence-based assessment of potential advantages over older silver formulations[J].Ann Plast Surg,2009,63(2):201-205.DOI: 10.1097/SAP.0b013e3181893825.
    [47] 刘雪来,何峰,宋岩彪,等.纳米银薇乔线在小鼠皮内连续缝合线道周围近期抗炎疗效的观察研究[J].发育医学电子杂志,2023,11(4):249-255.DOI: 10.3969/j.issn.2095-5340.2023.04.002.
    [48] LiuX,GaoP,DuJ,et al.Long-term anti-inflammatory efficacy in intestinal anastomosis in mice using silver nanoparticle-coated suture[J].J Pediatr Surg,2017,52(12):2083-2087.DOI: 10.1016/j.jpedsurg.2017.08.026.
    [49] KüpFÖ,ÇoşkunçayS,DumanF.Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): evaluation of their antibacterial, antioxidant and drug release system activities[J].Mater Sci Eng C Mater Biol Appl,2020,107:110207.DOI: 10.1016/j.msec.2019.110207.
    [50] DoescherJ,EmmanuelB,GreveJ,et al.Barbed suture in neck dissection: a randomized clinical study on efficacy, safety and aesthetic outcome[J].Eur Arch Otorhinolaryngol,2024,281(12):6613-6620.DOI: 10.1007/s00405-024-08869-6.
    [51] KamoK, KijimaH, OkuyamaK,et al. Osteolysis of the greater trochanter caused by a foreign body granuloma associated with the Ethibond® suture after total hip arthroplasty[J].Case Rep Orthop,2017,2017:6082302. DOI: 10.1155/2017/6082302.
    [52] OllivereBJ, BosmanHA, BearcroftPW,et al. Foreign body granulomatous reaction associated with polyethelene 'Fiberwire®' suture material used in Achilles tendon repair[J].Foot Ankle Surg,2014,20(2):e27-29. DOI: 10.1016/j.fas.2014.01.006.
    [53] OgbechieOA, PaulS, SchalockPC. A technique for identifying vicryl suture hypersensitivity[J].Dermatitis,2014,25(6):370-371. DOI: 10.1097/DER.0000000000000085.
  • 图  1  小鼠背部皮肤切口皮内连续缝合图。1A.皮肤连续缝合示意图;1B.皮肤缝合照片图;1C.对合创缘皮肤示意图;1D.皮肤缝合后,其中箭头指打结和固定位置

    图  2  小鼠背部皮肤切口取材切片和观察示意图。2A.术后样本取材切片示意图;2B.切口缝合线道周围观察示意图

    图  3  3组小鼠术后25 d切口缝合线道F4/80、IL-6和TNF-α的阳性表达情况 辣根过氧化物酶-二氨基联苯胺×200。3A、3B、3C与3D、3E、3F与3G、3H、3I.分别为普通薇乔线组、抗生素薇乔线组切口缝合线道F4/80、IL-6及TNF-α阳性表达,和纳米银薇乔线组切口缝合线道F4/80、IL-6及TNF-α阳性表达,其中图3C的阳性表达低于图3A、3B,图3F的阳性表达低于图3D、3E,图3I的阳性表达低于图3G、3H

    注:对普通薇乔线组、抗生素薇乔线组和纳米银薇乔线组小鼠皮肤切口分别采用可吸收薇乔线、三氯生抗菌涂层可吸收薇乔线和纳米银涂层可吸收薇乔线缝合;IL-6为白细胞介素6,TNF-α为肿瘤坏死因子α;F4/80、IL-6和TNF-α阳性染色均为棕色,其中F4/80染色阳性反映巨噬细胞分布

    图  4  3组小鼠术后25 d切口缝合线道细胞凋亡情况 辣根过氧化物酶-二氨基联苯胺×200。4A、4B、4C.分别为普通薇乔线组、抗生素薇乔线组和纳米银薇乔线组切口缝合线道细胞凋亡情况,图4C的细胞凋亡情况轻于图4A、4B

    注:对普通薇乔线组、抗生素薇乔线组和纳米银薇乔线组小鼠皮肤切口分别采用可吸收薇乔线、三氯生抗菌涂层可吸收薇乔线和纳米银涂层可吸收薇乔线缝合;细胞原位末端标记阳性染色为棕色,反映细胞凋亡

    图  5  3组小鼠术后25 d切口缝合线道胶原纤维形成情况 Masson×200。5A、5B、5C.分别为普通薇乔线组、抗生素薇乔线组和纳米银薇乔线组小鼠切口缝合线道胶原纤维形成情况,图5C胶原纤维形成情况优于5A、5B

    注:对普通薇乔线组、抗生素薇乔线组和纳米银薇乔线组小鼠皮肤切口分别采用可吸收薇乔线、三氯生抗菌涂层可吸收薇乔线和纳米银涂层可吸收薇乔线缝合;肌细胞呈红色,胶原纤维呈蓝色

    图  6  3组小鼠术后25 d切口缝合线道异物巨细胞积聚情况 辣根过氧化物酶-二氨基联苯胺×200。6A、6B、6C.分别为普通薇乔线组、抗生素薇乔线组和纳米银薇乔线组切口缝合线道异物巨细胞积聚情况,图6C的异物巨细胞积聚少于图6A、6B

    注:对普通薇乔线组、抗生素薇乔线组和纳米银薇乔线组小鼠皮肤切口分别采用可吸收薇乔线、三氯生抗菌涂层可吸收薇乔线和纳米银涂层可吸收薇乔线缝合;组织蛋白酶K阳性染色为棕色,反映异物巨细胞表达

    Table  1.   3组小鼠术后25 d切口缝合线道F4/80、IL-6和TNF-α阳性面积百分比比较(%,x¯±s

    组别样本数F4/80IL-6TNF-α
    普通薇乔线组6100±6.4100±7.6100±9.6
    抗生素薇乔线组647.2±3.253.8±5.043.2
    纳米银薇乔线组619.2±1.620.2±1.716.0±1.6
    F1 500.84607.065 117.59
    P<0.001<0.001<0.001
    P1<0.001<0.001<0.001
    P2<0.001<0.001<0.001
    P3<0.001<0.001<0.001
    注:对普通薇乔线组、抗生素薇乔线组和纳米银薇乔线组小鼠皮肤切口分别采用可吸收薇乔线、三氯生抗菌涂层可吸收薇乔线和纳米银涂层可吸收薇乔线缝合;IL-6为白细胞介素6,TNF-α为肿瘤坏死因子α;F值、P值为组间各指标总体比较所得;P1值、P2值、P3值分别为普通薇乔线组与抗生素薇乔线组、普通薇乔线组与纳米银薇乔线组、抗生素薇乔线组与纳米银薇乔线组比较所得
    下载: 导出CSV
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 网络出版日期:  2024-12-12

目录

    /

    返回文章
    返回