留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维生物打印支架的拓扑结构介导的免疫反应对小鼠毛囊周期的影响

刘清华 李曌 恩和吉日嘎拉 张超 宋薇 王玉振 梁莉婷 张孟德 黄钰岩 李筱贺 黄沙

刘清华, 李曌, 恩和吉日嘎拉, 等. 三维生物打印支架的拓扑结构介导的免疫反应对小鼠毛囊周期的影响[J]. 中华烧伤与创面修复杂志, 2024, 40(1): 43-49. DOI: 10.3760/cma.j.cn501225-20231020-00125.
引用本文: 刘清华, 李曌, 恩和吉日嘎拉, 等. 三维生物打印支架的拓扑结构介导的免疫反应对小鼠毛囊周期的影响[J]. 中华烧伤与创面修复杂志, 2024, 40(1): 43-49. DOI: 10.3760/cma.j.cn501225-20231020-00125.
Liu QH,Li Z,Enhejirigala,et al.Effects of immune responses mediated by topological structures of three-dimensional bioprinted scaffolds on hair follicle cycle in mice[J].Chin J Burns Wounds,2024,40(1):43-49.DOI: 10.3760/cma.j.cn501225-20231020-00125.
Citation: Liu QH,Li Z,Enhejirigala,et al.Effects of immune responses mediated by topological structures of three-dimensional bioprinted scaffolds on hair follicle cycle in mice[J].Chin J Burns Wounds,2024,40(1):43-49.DOI: 10.3760/cma.j.cn501225-20231020-00125.

三维生物打印支架的拓扑结构介导的免疫反应对小鼠毛囊周期的影响

doi: 10.3760/cma.j.cn501225-20231020-00125
基金项目: 

国家重点研发计划项目 2022YFA1104600, 2022YFA1104604, 2017YFC1103303

国防科技卓越青年科学基金项目 2022-JCJQ-ZQ-016

国防科技基础加强计划项目 2022-JCJQ-ZD-096-00, 2023-JCJQ-ZD-117-12

国家自然科学基金面上项目 82274362

国家自然科学基金青年科学基金项目 32000969

军事科研重点实验室自主科研项目 2023-JSKY-SSQG-008

内蒙古自治区自然科学基金项目 2021LHMS08050

内蒙古自治区高等学校创新团队发展计划 NMGIRT2227

内蒙古医科大学重点项目 YKD2021ZD001

详细信息
    通讯作者:

    李筱贺,Email:798242742@qq.com

    黄沙,Email:stellarahuang@sina.com

Effects of immune responses mediated by topological structures of three-dimensional bioprinted scaffolds on hair follicle cycle in mice

Funds: 

National Key Research and Development Program of China 2022YFA1104600, 2022YFA1104604, 2017YFC1103303

Science Fund for National Defense Distinguished Young Scholars 2022-JCJQ-ZQ-016

National Defense Science and Technology Basic Enhancement Program 2022-JCJQ-ZD-096-00, 2023-JCJQ-ZD-117-12

General Program of National Natural Science Foundation of China 82274362

Youth Science Foundation Project of National Natural Science Foundation of China 32000969

Scientific Research Project of the Key Laboratory for Military Research 2023-JSKY-SSQG-008

Natural Science Foundation of Inner Mongolia Autonomous Region of China 2021LHMS08050

Inner Mongolia Autonomous Region Higher Education Innovation Team Development Plan NMGIRT2227

Key Project of Inner Mongolia Medical University YKD2021ZD001

More Information
  • 摘要:   目的   探讨具有不同拓扑结构的三维生物打印支架介导的免疫反应对小鼠毛囊周期的影响。   方法   该研究为实验研究。将海藻酸钠-明胶复合水凝胶用三维生物打印机打印成3种支架,并按照支架的3种拓扑结构(打印时打印喷头的旋转角度分别为45°、60°、90°),分别命名为T45支架、T60支架、T90支架,肉眼观察3种支架交联后的形态。取9只8周龄雌性C57BL/6J小鼠,按随机数字表法分为T45组、T60组、T90组,每组3只,分别于背部皮下埋植T45、T60、T90支架。于植入后7 d,观察小鼠背部脱毛区毛发生长情况,行苏木精-伊红染色观测支架周围的纤维囊厚度,行免疫荧光染色检测支架周围组织中CD68、骨形态发生蛋白2(BMP-2)、肿瘤坏死因子(TNF)蛋白的表达水平。以上实验样本数均为3。   结果   3种支架交联后均拓扑结构明显,保真度高。植入后7 d,T45组、T90组小鼠背部脱毛区毛发均生长明显;T60组小鼠支架植入区毛发生长缓慢,与未植入区差别明显。植入后7 d,与T90组[(18±4)μm]相比,T45组、T60组小鼠支架周围的纤维囊厚度[(39±4)、(55±8)μm]均明显增加( P<0.05);与T45组相比,T60组小鼠支架周围的纤维囊厚度明显增加( P<0.05)。植入后7 d,T60组小鼠支架周围组织中CD68蛋白的表达水平明显高于T45组和T90组( P值均<0.05);T60组小鼠支架周围组织中BMP-2蛋白的表达水平明显高于T45组、T90组( P值均<0.05),T45组小鼠支架周围组织中BMP-2蛋白的表达水平明显高于T90组( P<0.05);T60组小鼠支架周围组织中TNF蛋白的表达水平明显低于T45组和T90组( P值均<0.05)。   结论   具有不同拓扑结构的三维生物打印支架植入小鼠体内后会介导不同程度的免疫反应。适度的免疫反应可促进小鼠脱毛区毛发生长,过强的免疫反应抑制毛囊进入生长期。

     

  • 参考文献(23)

    [1] ShafieeA, AtalaA. Tissue engineering: toward a new era of medicine[J]. Annu Rev Med, 2017, 68:29-40. DOI: 10.1146/annurev-med-102715-092331.
    [2] NairA, TangLP. Influence of scaffold design on host immune and stem cell responses[J]. Semin Immunol, 2017,29:62-71. DOI: 10.1016/j.smim.2017.03.001.
    [3] 李洋, 惠涛涛, 郑东梅, 等. 基于三维生物打印技术的皮肤组织工程研究进展[J].中华烧伤与创面修复杂志,2023,39(11):1096-1100. DOI: 10.3760/cma.j.cn501225-20230131-00029.
    [4] DhaniaS, BernelaM, RaniR, et al. Scaffolds the backbone of tissue engineering: advancements in use of polyhydroxyalkanoates (PHA)[J]. Int J Biol Macromol, 2022, 208: 243-259. DOI: 10.1016/j.ijbiomac.2022.03.030.
    [5] AbnaveP, GhigoE. Role of the immune system in regeneration and its dynamic interplay with adult stem cells[J]. Semin Cell Dev Biol, 2019,87:160-168. DOI: 10.1016/j.semcdb.2018.04.002.
    [6] ZhangB, SuYC, ZhouJC, et al. Toward a better regeneration through implant-mediated immunomodulation: harnessing the immune responses[J]. Adv Sci (Weinh), 2021, 8(16): e2100446. DOI: 10.1002/advs.202100446.
    [7] JiangZW, FuMD, ZhuDJ, et al. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering[J]. Cytokine Growth Factor Rev, 2022,66:53-73. DOI: 10.1016/j.cytogfr.2022.05.003.
    [8] AntmenE, VranaNE, HasirciV. The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures[J]. Biomater Sci, 2021,9(24):8090-8110. DOI: 10.1039/d1bm00840d.
    [9] HeinrichMA, LiuWJ, JimenezA, et al. 3D bioprinting: from benches to translational applications[J]. Small, 2019, 15(23): e1805510. DOI: 10.1002/smll.201805510.
    [10] 恩和吉日嘎拉, 张熠杰, 李建军, 等. 生物三维打印类细胞外基质硬度对骨髓间充质干细胞向皮肤附属器细胞分化的影响[J].中华烧伤杂志,2020,36(11):1013-1023. DOI: 10.3760/cma.j.cn501120-20200811-00375.
    [11] ZhangYS, YueK, AlemanJ, et al. 3D bioprinting for tissue and organ fabrication[J]. Ann Biomed Eng, 2017, 45(1): 148-163. DOI: 10.1007/s10439-016-1612-8.
    [12] JinS, YangRL, ChuCY, et al. Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration[J]. Acta Biomater, 2021,129:148-158. DOI: 10.1016/j.actbio.2021.05.042.
    [13] WangPJ, SunYZ, ShiXQ, et al. Bioscaffolds embedded with regulatory modules for cell growth and tissue formation: a review[J]. Bioact Mater, 2020, 6(5): 1283-1307. DOI: 10.1016/j.bioactmat.2020.10.014.
    [14] LiJJ, LiuYF, ZhangYJ, et al. Biophysical and biochemical cues of biomaterials guide mesenchymal stem cell behaviors[J]. Front Cell Dev Biol, 2021, 9: 640388. DOI: 10.3389/fcell.2021.640388.
    [15] WeiQH, ZhouJY, AnYL, et al. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: a review[J]. Int J Biol Macromol, 2023, 232: 123450. DOI: 10.1016/j.ijbiomac.2023.123450.
    [16] MohantoS, NarayanaS, MeraiKP, et al. Advancements in gelatin-based hydrogel systems for biomedical applications: a state-of-the-art review[J]. Int J Biol Macromol, 2023,253(Pt 5):127143. DOI: 10.1016/j.ijbiomac.2023.127143.
    [17] LiJJ, ZhangYJ, EnheJ, et al. Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness[J]. Mater Sci Eng C Mater Biol Appl, 2021,126:112193. DOI: 10.1016/j.msec.2021.112193.
    [18] YuXP, WangYF, ZhangM, et al. 3D printing of gear-inspired biomaterials: immunomodulation and bone regeneration[J]. Acta Biomater, 2023,156:222-233. DOI: 10.1016/j.actbio.2022.09.008.
    [19] WangYZ, ZhangFL, YaoB, et al. Notch4 participates in mesenchymal stem cell-induced differentiation in 3D-printed matrix and is implicated in eccrine sweat gland morphogenesis[J/OL]. Burns Trauma, 2023,11:tkad032[2023-10-20]. http://www.ncbi.nlm.nih.gov/pubmed/37397510. DOI: 10.1093/burnst/tkad032.
    [20] SchneiderMR, Schmidt-UllrichR, PausR. The hair follicle as a dynamic miniorgan[J]. Curr Biol, 2009,19(3):R132-142. DOI: 10.1016/j.cub.2008.12.005.
    [21] WangXS, ChenHY, TianRY, et al. Macrophages induce AKT/β-catenin-dependent Lgr5 + stem cell activation and hair follicle regeneration through TNF[J]. Nat Commun, 2017,8:14091. DOI: 10.1038/ncomms14091.
    [22] BuWH, WuYH, GhaemmaghamiAM, et al. Rational design of hydrogels for immunomodulation[J]. Regen Biomater, 2022,9:rbac009. DOI: 10.1093/rb/rbac009.
    [23] PlikusMV, ChuongCM. Complex hair cycle domain patterns and regenerative hair waves in living rodents[J]. J Invest Dermatol, 2008,128(5):1071-1080. DOI: 10.1038/sj.jid.5701180.
  • 1  3种拓扑结构的三维生物打印海藻酸钠-明胶复合水凝胶支架形态。1A、1B、1C.分别为交联后的T45、T60、T90支架,形态均与模型一致

    注:T45、T60、T90中T指拓扑结构,45、60、90指三维生物打印支架时打印喷头的旋转角度,各图中右上角为模型图像

    2  3组小鼠皮下埋植具有不同拓扑结构的三维生物打印海藻酸钠-明胶复合水凝胶支架7 d后的大体形态。2A、2B、2C.分别为T45组、T60组、T90组支架植入后的大体形态,图2A、2C中支架植入区与未植入区的毛发生长情况相似,图2B中支架植入区毛发生长缓慢、皮肤呈粉红色

    注:T45、T60、T90中T指拓扑结构,45、60、90指三维生物打印支架时打印喷头的旋转角度;黄色虚线内区域为支架植入区

    3  3组小鼠皮下埋植具有不同拓扑结构的三维生物打印海藻酸钠-明胶复合水凝胶支架7 d后支架周围组织病理变化 苏木精-伊红×100。3A、3B、3C.分别为T45组、T60组、T90组支架未降解部分及其周围的皮肤组织,各组支架周围均形成纤维囊,相对于图3A、3C,图3B中支架周围的纤维囊较厚

    注:T45、T60、T90中T指拓扑结构,45、60、90指三维生物打印支架时打印喷头的旋转角度;红色箭头指示纤维囊,蓝色箭头指示未降解的支架

    4  3组小鼠皮下埋植具有不同拓扑结构的三维生物打印海藻酸钠-明胶复合水凝胶支架7 d后支架周围组织中CD68、BMP-2、TNF蛋白的表达水平 Alexa Fluor 488-4′,6-二脒基-2-苯基吲哚×200。4A、4B、4C.分别为T45组、T60组、T90组支架周围组织中CD68蛋白的表达水平,图4B中CD68蛋白的表达水平高于图4A、4C;4D、4E、4F.分别为T45组、T60组、T90组支架周围组织中BMP-2蛋白的表达水平,图4E中BMP-2蛋白的表达水平高于图4D、4F;4G、4H、4I.分别为T45组、T60组、T90组支架周围组织中TNF蛋白的表达水平,图4H中TNF蛋白的表达水平低于图4G、4I

    注:BMP-2为骨形态发生蛋白2、TNF为肿瘤坏死因子;CD68、BMP-2、TNF蛋白阳性表达均为绿色;T45、T60、T90中T指拓扑结构,45、60、90指三维生物打印支架时打印喷头的旋转角度

    表1  3组小鼠皮下埋植具有不同拓扑结构的三维生物打印海藻酸钠-明胶复合水凝胶支架7 d后支架周围组织中3种蛋白的表达比较( x ¯ ± s

    表1.   Comparison of the expressions of 3 proteins in the tissue surrounding the scaffolds of subcutaneously implanted three-dimensional bioprinted scaffolds of alginate-gelation composite hydrogels with different topological structures in 3 groups of mice after 7 days

    组别 样本数 CD68 BMP-2 TNF
    T45组 3 23.9±2.0 6.1±0.5 15.4±3.5
    T60组 3 63.8±12.5 17.5±0.8 8.0±0.9
    T90组 3 25.4±2.2 2.4±0.9 15.4±2.3
    F 27.58 177.60 8.95
    P 0.001 <0.001 0.016
    P 1 0.002 <0.001 0.032
    P 2 >0.999 0.003 >0.999
    P 3 0.002 <0.001 0.031
    注:BMP-2为骨形态发生蛋白2,TNF为肿瘤坏死因子;T45、T60、T90中T指拓扑结构,45、60、90指三维生物打印支架时打印喷头的旋转角度; F值、 P值为3组间各指标总体比较所得; P 1值、 P 2值分别为T45组与T60组、T90组比较所得, P 3值为T60组与T90组比较所得
    下载: 导出CSV
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2471
  • HTML全文浏览量:  94
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-20

目录

    /

    返回文章
    返回