留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物材料表界面地貌结构及理化特性对巨噬细胞的影响及其在创面愈合中的应用研究进展

张惟 邵佳鸣 杨敏 柳欢 韩春茂 王新刚

张惟, 邵佳鸣, 杨敏, 等. 生物材料表界面地貌结构及理化特性对巨噬细胞的影响及其在创面愈合中的应用研究进展[J]. 中华烧伤与创面修复杂志, 2024, 40(9): 891-896. DOI: 10.3760/cma.j.cn501225-20231110-00190.
引用本文: 张惟, 邵佳鸣, 杨敏, 等. 生物材料表界面地貌结构及理化特性对巨噬细胞的影响及其在创面愈合中的应用研究进展[J]. 中华烧伤与创面修复杂志, 2024, 40(9): 891-896. DOI: 10.3760/cma.j.cn501225-20231110-00190.
Zhang W,Shao JM,Yang M,et al.Research advance on the effects of surface interface topographies and physicochemical properties of biomaterial on macrophages and their application in wound healing[J].Chin J Burns Wounds,2024,40(9):891-896.DOI: 10.3760/cma.j.cn501225-20231110-00190.
Citation: Zhang W,Shao JM,Yang M,et al.Research advance on the effects of surface interface topographies and physicochemical properties of biomaterial on macrophages and their application in wound healing[J].Chin J Burns Wounds,2024,40(9):891-896.DOI: 10.3760/cma.j.cn501225-20231110-00190.

生物材料表界面地貌结构及理化特性对巨噬细胞的影响及其在创面愈合中的应用研究进展

doi: 10.3760/cma.j.cn501225-20231110-00190
基金项目: 

国家重点研发计划 2022YFC2403100

国家自然科学基金面上项目 82172198

详细信息
    通讯作者:

    王新刚,Email:wangxingang8157@zju.edu.cn

Research advance on the effects of surface interface topographies and physicochemical properties of biomaterial on macrophages and their application in wound healing

Funds: 

National Key Research and Development Program of China 2022YFC2403100

General Program of National Natural Science Foundation of China 82172198

More Information
  • 摘要: 人体免疫系统在维持组织稳态和疾病进展中起关键作用。研发可调控先天免疫系统和适应免疫系统的生物材料,在组织工程领域极具应用前景。该文从材料学角度探讨如何设计生物材料的表界面地貌结构或理化特性,从而调控巨噬细胞的命运,如活化、极化、黏附、迁移、增殖和分泌;同时探讨如何将这些具有免疫调控功能的生物材料应用于创面愈合领域。此外,该文还提出生物材料在免疫调控应用中的局限性,并对未来的发展方向进行展望。

     

  • 参考文献(45)

    [1] ShalabiMM, GortemakerA, Van'tHof MA, et al. Implant surface roughness and bone healing: a systematic review[J]. J Dent Res, 2006,85(6):496-500. DOI: 10.1177/154405910608500603.
    [2] BarthKA, WaterfieldJD, BrunetteDM. The effect of surface roughness on RAW 264.7 macrophage phenotype[J]. J Biomed Mater Res A, 2013,101(9):2679-2688. DOI: 10.1002/jbm.a.34562.
    [3] ZhangY, ChengX, JansenJA, et al. Titanium surfaces characteristics modulate macrophage polarization[J]. Mater Sci Eng C Mater Biol Appl, 2019,95:143-151. DOI: 10.1016/j.msec.2018.10.065.
    [4] AbariciaJO, ShahAH, ChaubalM, et al. Wnt signaling modulates macrophage polarization and is regulated by biomaterial surface properties[J]. Biomaterials, 2020,243:119920. DOI: 10.1016/j.biomaterials.2020.119920.
    [5] AveryD, MorandiniL, SheakleyLS, et al. Canonical Wnt signaling enhances pro-inflammatory response to titanium by macrophages[J]. Biomaterials, 2022,289:121797. DOI: 10.1016/j.biomaterials.2022.121797.
    [6] HotchkissKM, ReddyGB, HyzySL, et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation[J]. Acta Biomater, 2016,31:425-434. DOI: 10.1016/j.actbio.2015.12.003.
    [7] HamletSM, LeeR, MoonHJ, et al. Hydrophilic titanium surface-induced macrophage modulation promotes pro-osteogenic signalling[J]. Clin Oral Implants Res, 2019,30(11):1085-1096. DOI: 10.1111/clr.13522.
    [8] MironRJ, BohnerM, ZhangY, et al. Osteoinduction and osteoimmunology: emerging concepts[J]. Periodontol 2000, 2024,94(1):9-26. DOI: 10.1111/prd.12519.
    [9] ChenY, LuoZ, MengW, et al. Decoding the "fingerprint" of implant materials: insights into the foreign body reaction[J]. Small, 2024,20(23):e2310325. DOI: 10.1002/smll.202310325.
    [10] BarkalAA, WeiskopfK, KaoKS, et al. Engagement of MHC class Ⅰ by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy[J]. Nat Immunol, 2018,19(1):76-84. DOI: 10.1038/s41590-017-0004-z.
    [11] JiL, ZhaoX, ZhangB, et al. Slc6a8-mediated creatine uptake and accumulation reprogram macrophage polarization via regulating cytokine responses[J]. Immunity, 2019,51(2):272-284.e7. DOI: 10.1016/j.immuni.2019.06.007.
    [12] LiJ, JiangX, LiH, et al. Tailoring materials for modulation of macrophage fate[J]. Adv Mater, 2021,33(12):e2004172. DOI: 10.1002/adma.202004172.
    [13] SunL, ChenX, MaK, et al. Novel titanium implant: a 3D multifunction architecture with charge-trapping and piezoelectric self-stimulation[J]. Adv Healthc Mater, 2023,12(11):e2202620. DOI: 10.1002/adhm.202202620.
    [14] DengH, YangX, WangH, et al. Tailoring the surface charges of iron-crosslinked dextran nanogels towards improved tumor-associated macrophage targeting[J]. Carbohydr Polym, 2024,325:121585. DOI: 10.1016/j.carbpol.2023.121585.
    [15] XiaoB, LiuY, ChandrasiriI, et al. Impact of nanoparticle physicochemical properties on protein corona and macrophage polarization[J/OL]. ACS Appl Mater Interfaces, 2023(2023-04-14)[2023-11-10].https://pubmed.ncbi.nlm.nih.gov/36916683/.DOI: 10.1021/acsami.2c22471.[published online ahead of print].
    [16] GargK, PullenNA, OskeritzianCA, et al. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds[J]. Biomaterials, 2013,34(18):4439-4451. DOI: 10.1016/j.biomaterials.2013.02.065.
    [17] HoriiT, TsujimotoH, HagiwaraA, et al. Effects of fiber diameter and spacing size of an artificial scaffold on the in vivo cellular response and tissue remodeling[J]. ACS Appl Bio Mater, 2021,4(9):6924-6936. DOI: 10.1021/acsabm.1c00572.
    [18] MoonH, CremmelCV, KulpaA, et al. Novel grooved substrata stimulate macrophage fusion, CCL2 and MMP-9 secretion[J]. J Biomed Mater Res A, 2016, 104(9):2243-2254. DOI: 10.1002/jbm.a.35757.
    [19] WangT, LuuTU, ChenA, et al. Topographical modulation of macrophage phenotype by shrink-film multi-scale wrinkles[J]. Biomater Sci, 2016,4(6):948-952. DOI: 10.1039/c6bm00224b.
    [20] BartneckM, HeffelsKH, PanY, et al. Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres[J]. Biomaterials, 2012,33(16):4136-4146. DOI: 10.1016/j.biomaterials.2012.02.050.
    [21] ZhuG, ZhangR, XieQ, et al. Shish-kebab structure fiber with nano and micro diameter regulate macrophage polarization for anti-inflammatory and bone differentiation[J]. Mater Today Bio, 2023,23:100880. DOI: 10.1016/j.mtbio.2023.100880.
    [22] WuS, ShanZ, XieL, et al. Mesopore controls the responses of blood clot-immune complex via modulating fibrin network[J]. Adv Sci (Weinh), 2022,9(3):e2103608. DOI: 10.1002/advs.202103608.
    [23] MaharaA, KojimaK, YamamotoM, et al. Accelerated tissue regeneration in decellularized vascular grafts with a patterned pore structure[J]. J Mater Chem B, 2022,10(14):2544-2550. DOI: 10.1039/d1tb02271g.
    [24] McWhorterFY, WangT, NguyenP, et al. Modulation of macrophage phenotype by cell shape[J]. Proc Natl Acad Sci U S A, 2013,110(43):17253-17258. DOI: 10.1073/pnas.1308887110.
    [25] BartneckM, SchulteVA, PaulNE, et al. Induction of specific macrophage subtypes by defined micro-patterned structures[J]. Acta Biomater, 2010,6(10):3864-3872. DOI: 10.1016/j.actbio.2010.04.025.
    [26] MohiuddinM, PanHA, HungYC, et al. Control of growth and inflammatory response of macrophages and foam cells with nanotopography[J]. Nanoscale Res Lett, 2012,7(1):394. DOI: 10.1186/1556-276X-7-394.
    [27] VeisehO, DoloffJC, MaM, et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates[J]. Nat Mater, 2015,14(6):643-651. DOI: 10.1038/nmat4290.
    [28] RakicM, RadunovicM, Petkovic-CurcinA, et al. Study on the immunopathological effect of titanium particles in peri-implantitis granulation tissue: a case-control study[J]. Clin Oral Implants Res,2022, 33(6):656-666. DOI: 10.1111/clr.13928.
    [29] Toledano-SerrabonaJ, Camps-FontO, de MoraesDP, et al. Ion release and local effects of titanium metal particles from dental implants: an experimental study in rats[J]. J Periodontol, 2023,94(1):119-129. DOI: 10.1002/JPER.22-0091.
    [30] TylekT, BlumC, HrynevichA, et al. Precisely defined fiber scaffolds with 40 μm porosity induce elongation driven M2-like polarization of human macrophages[J]. Biofabrication, 2020,12(2):025007. DOI: 10.1088/1758-5090/ab5f4e.
    [31] SommerfeldSD, CherryC, SchwabRM, et al. Interleukin-36γ-producing macrophages drive IL-17-mediated fibrosis[J]. Sci Immunol, 2019,4(40):eaax4783.DOI: 10.1126/sciimmunol.aax4783.
    [32] HeC , YuL , YaoH ,et al. Combinatorial photothermal 3D‐printing scaffold and checkpoint blockade inhibits growth/metastasis of breast cancer to bone and accelerates osteogenesis[J].Adv Funct Mater, 2021, 31:2006214. DOI: 10.1002/adfm.202006214.
    [33] LiuH, WuQ, LiuS, et al. The role of integrin αvβ3 in biphasic calcium phosphate ceramics mediated M2 Macrophage polarization and the resultant osteoinduction[J]. Biomaterials, 2024,304:122406. DOI: 10.1016/j.biomaterials.2023.122406.
    [34] ZhouK, YangC, ShiK, et al. Activated macrophage membrane-coated nanoparticles relieve osteoarthritis-induced synovitis and joint damage[J]. Biomaterials, 2023,295:122036. DOI: 10.1016/j.biomaterials.2023.122036.
    [35] LiJ, LiL, WuT, et al. An injectable thermosensitive hydrogel containing resveratrol and dexamethasone-loaded carbonated hydroxyapatite microspheres for the regeneration of osteoporotic bone defects[J]. Small Methods, 2024,8(1):e2300843. DOI: 10.1002/smtd.202300843.
    [36] WhitakerR, Hernaez-EstradaB, HernandezRM, et al. Immunomodulatory biomaterials for tissue repair[J]. Chem Rev, 2021,121(18):11305-11335. DOI: 10.1021/acs.chemrev.0c00895.
    [37] GroseR, WernerS. Wound-healing studies in transgenic and knockout mice[J]. Mol Biotechnol, 2004,28(2):147-166. DOI: 10.1385/MB:28:2:147.
    [38] Al SadounH. Macrophage phenotypes in normal and diabetic wound healing and therapeutic interventions[J]. Cells, 2022, 11(15):2430. DOI: 10.3390/cells11152430.
    [39] VelnarT, BaileyT, SmrkoljV. The wound healing process: an overview of the cellular and molecular mechanisms[J]. J Int Med Res, 2009,37(5):1528-1542. DOI: 10.1177/147323000903700531.
    [40] MartinezFO, SicaA, MantovaniA, et al. Macrophage activation and polarization[J]. Front Biosci, 2008,13:453-461. DOI: 10.2741/2692.
    [41] ElliottMR, KosterKM, MurphyPS. Efferocytosis signaling in the regulation of macrophage inflammatory responses[J]. J Immunol, 2017,198(4):1387-1394. DOI: 10.4049/jimmunol.1601520.
    [42] WangH, HuangR, BaiL, et al. Extracellular matrix-mimetic immunomodulatory hydrogel for accelerating wound healing[J]. Adv Healthc Mater, 2023,12(27):e2301264. DOI: 10.1002/adhm.202301264.
    [43] LiL, QianY, JiangC, et al. The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds[J]. Biomaterials, 2012,33(12):3428-3445. DOI: 10.1016/j.biomaterials.2012.01.038.
    [44] LiuW, GaoR, YangC, et al. ECM-mimetic immunomodulatory hydrogel for methicillin-resistant Staphylococcus aureus-infected chronic skin wound healing[J]. Sci Adv, 2022,8(27):eabn7006. DOI: 10.1126/sciadv.abn7006.
    [45] QianY, ZhengY, JinJ, et al. Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold[J]. Adv Mater, 2022,34(29):e2200521. DOI: 10.1002/adma.202200521.
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  9
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 网络出版日期:  2024-09-27

目录

    /

    返回文章
    返回