留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化铈纳米酶-甲基丙烯酸酐化明胶水凝胶在小鼠全层皮肤缺损感染创面修复中的作用

顾雅男 徐翔昊 王彦平 李宇韬 梁振 余州 彭毅志 宋保强

顾雅男, 徐翔昊, 王彦平, 等. 氧化铈纳米酶-甲基丙烯酸酐化明胶水凝胶在小鼠全层皮肤缺损感染创面修复中的作用[J]. 中华烧伤与创面修复杂志, 2024, 40(2): 131-140. DOI: 10.3760/cma.j.cn501225-20231120-00201.
引用本文: 顾雅男, 徐翔昊, 王彦平, 等. 氧化铈纳米酶-甲基丙烯酸酐化明胶水凝胶在小鼠全层皮肤缺损感染创面修复中的作用[J]. 中华烧伤与创面修复杂志, 2024, 40(2): 131-140. DOI: 10.3760/cma.j.cn501225-20231120-00201.
Gu YN,Xu XH,Wang YP,et al.Effects of cerium oxide nanoenzyme-gelatin methacrylate anhydride hydrogel in the repair of infected full-thickness skin defect wounds in mice[J].Chin J Burns Wounds,2024,40(2):131-140.DOI: 10.3760/cma.j.cn501225-20231120-00201.
Citation: Gu YN,Xu XH,Wang YP,et al.Effects of cerium oxide nanoenzyme-gelatin methacrylate anhydride hydrogel in the repair of infected full-thickness skin defect wounds in mice[J].Chin J Burns Wounds,2024,40(2):131-140.DOI: 10.3760/cma.j.cn501225-20231120-00201.

氧化铈纳米酶-甲基丙烯酸酐化明胶水凝胶在小鼠全层皮肤缺损感染创面修复中的作用

doi: 10.3760/cma.j.cn501225-20231120-00201
基金项目: 

陕西省科技厅一般项目 2020SF-179

详细信息
    通讯作者:

    彭毅志,Email:yizhipengtmmu@163.com

    宋保强,Email:songbq2012@163.com

Effects of cerium oxide nanoenzyme-gelatin methacrylate anhydride hydrogel in the repair of infected full-thickness skin defect wounds in mice

Funds: 

General Project of Science and Technology Department of Shaanxi Province of China 2020SF-179

More Information
  • 摘要:   目的   探讨氧化铈纳米酶-甲基丙烯酸酐化明胶(GelMA)水凝胶(以下简称复合水凝胶)在小鼠全层皮肤缺损感染创面修复中的作用。   方法   该研究为实验研究。采用水热法制备粒径为(116±9)nm的氧化铈纳米酶,同时制备具有多孔网状结构且成胶性能良好的GelMA水凝胶。筛选出25 μg/mL氧化铈纳米酶可明显促进人皮肤成纤维细胞增殖和具有较高的超氧化物歧化酶活性,将其加入GelMA水凝胶中制备复合水凝胶。计算用磷酸盐缓冲液(PBS)浸泡3、7 d后复合水凝胶中氧化铈纳米酶的释放百分比。将小鼠红细胞悬液分为用相应溶液处理的PBS组、Triton X-100组、氧化铈纳米酶组、GelMA水凝胶组及复合水凝胶组,利用酶标仪检测处理1 h后红细胞的溶血情况。测定用PBS、氧化铈纳米酶、GelMA水凝胶及复合水凝胶培养耐甲氧西林金黄色葡萄球菌(MRSA)和大肠埃希菌2 h后的细菌浓度。以上实验样本数均为3。取24只8周龄雄性BALB/c小鼠,在背部对称位置各制备1个用MRSA感染的全层皮肤缺损创面。将小鼠分为不进行药物干预的对照组及滴加相应溶液的氧化铈纳米酶组、GelMA水凝胶组和复合水凝胶组,每组6只小鼠。观察伤后3、7、14 d创面愈合情况并测量伤后3、7 d剩余创面面积(样本数为5)。取小鼠伤后3 d创面分泌物,检测MRSA的浓度(样本数为3),采用激光散斑血流成像系统观测小鼠伤后5 d创面血流灌注量(样本数为6)。伤后14 d,取小鼠创面组织,行苏木精-伊红染色观察新生上皮情况,行Masson染色观察胶原情况(样本数均为3)。   结果   浸泡3、7 d后,复合水凝胶中氧化铈纳米酶释放百分比分别约为39%、75%。处理1 h后,与Triton X-100组比较,PBS组、GelMA水凝胶组、氧化铈纳米酶组及复合水凝胶组红细胞溶血程度均明显下降( P<0.05)。与用PBS培养比较,用氧化铈纳米酶、GelMA水凝胶、复合水凝胶培养2 h的MRSA、大肠埃希菌浓度均明显降低( P<0.05)。伤后3~14 d,4组小鼠创面均逐渐愈合,复合水凝胶组小鼠伤后14 d创面全部愈合。伤后3、7 d,复合水凝胶组小鼠剩余创面面积分别为(29±3)、(13±5)mm 2,明显小于对照组的(56±12)、(46±10)mm 2和氧化铈纳米酶组的(51±7)、(38±8)mm 2P值均<0.05),与GelMA水凝胶组的(41±5)、(24±9)mm 2相近( P值均>0.05)。伤后3 d,复合水凝胶组小鼠创面MRSA浓度明显低于对照组、氧化铈纳米酶组、GelMA水凝胶组( P值均<0.05)。伤后5 d,复合水凝胶组小鼠创面血液灌注量明显大于对照组、氧化铈纳米酶组、GelMA水凝胶组( P值均<0.05)。伤后14 d,复合水凝胶组小鼠创面基本完成上皮化,上皮化情况明显优于其他3组;复合水凝胶组小鼠创面胶原含量较其他3组明显增多,排列也更为有序。   结论   复合水凝胶具有良好的生物相容性和体内外抗菌效果,可持续缓释氧化铈纳米酶,改善早期创面血流灌注,促进创面再上皮化及胶原合成,从而促进小鼠全层皮肤缺损感染创面愈合。

     

  • 1  氧化铈纳米酶和GelMA水凝胶的微观形貌。1A.氧化铈纳米酶颗粒均匀 扫描电子显微镜×60 000;1B.GelMA水凝胶呈多孔网状结构 扫描电子显微镜×100

    注:GelMA为甲基丙烯酸酐化明胶

    2  GelMA水凝胶溶液成胶前后的状态。2A.成胶前倾斜时为液态;2B.成胶后倒立时为稳定不流动的凝胶状态

    注:GelMA为甲基丙烯酸酐化明胶

    3  4组小鼠伤后各个时间点全层皮肤缺损感染创面愈合情况。3A、3B、3C、3D.分别为对照组、氧化铈纳米酶组、GelMA水凝胶组、复合水凝胶组伤后3 d的创面,图3D剩余创面面积明显小于图3A、3B;3E、3F、3G、3H.分别为对照组、氧化铈纳米酶组、GelMA水凝胶组、复合水凝胶组伤后7 d的创面,图3H剩余创面面积明显小于图3E、3F、3G

    注:对照组小鼠创面仅用无菌手术敷贴封闭;氧化铈纳米酶组、甲基丙烯酸酐化明胶(GelMA)水凝胶组、复合水凝胶组小鼠创面先分别滴加氧化铈纳米酶、GelMA水凝胶及氧化铈纳米酶-GelMA水凝胶,再用无菌手术敷贴封闭

    4  4组小鼠伤后5 d全层皮肤缺损感染创面血流灌注情况。4A、4B、4C、4D.分别为对照组、氧化铈纳米酶组、GelMA水凝胶组、复合水凝胶组创面血流灌注情况,图4D创面血流灌注量明显多于图4A、4B、4C

    注:对照组小鼠创面仅用无菌手术敷贴封闭,氧化铈纳米酶组、甲基丙烯酸酐化明胶(GelMA)水凝胶组、复合水凝胶组小鼠创面先分别滴加氧化铈纳米酶、GelMA水凝胶及氧化铈纳米酶-GelMA水凝胶,再用无菌手术敷贴封闭;黑色代表无血流灌注,绿色代表血流灌注少,红色代表血流灌注充足

    5  4组小鼠伤后14 d全层皮肤缺损感染创面新生上皮形成和胶原生成情况。5A、5B、5C、5D.分别为对照组、氧化铈纳米酶组、GelMA水凝胶组、复合水凝胶组创面新生上皮情况,图5D上皮化程度明显高于图5A、5B、5C 苏木精-伊红×5;5E、5F、5G、5H.分别为对照组、氧化铈纳米酶组、GelMA水凝胶组、复合水凝胶组创面胶原生成情况,图5H创面新生胶原含量明显多于图5E、5F、5G Masson×5

    注:对照组小鼠创面仅用无菌手术敷贴封闭,氧化铈纳米酶组、甲基丙烯酸酐化明胶(GelMA)水凝胶组、复合水凝胶组小鼠创面先分别滴加氧化铈纳米酶、GelMA水凝胶及氧化铈纳米酶-GelMA水凝胶,再用无菌手术敷贴封闭

    表1  4组小鼠伤后各时间点全层皮肤缺损感染创面剩余面积比较(mm 2 x ¯ ± s

    表1.   Comparison of the remaining areas of infected wounds with full-thickness skin defects in four groups of mice at various time points after injury

    组别 样本数 3 d 7 d
    对照组 5 56±12 46±10
    氧化铈纳米酶组 5 51±7 38±8
    GelMA水凝胶组 5 41±5 24±9
    复合水凝胶组 5 29±3 13±5
    F 13.38 15.95
    P <0.001 <0.001
    P 1 <0.001 <0.001
    P 2 <0.001 <0.001
    P 3 0.076 0.145
    注:对照组小鼠创面仅用无菌手术敷贴封闭;氧化铈纳米酶组、甲基丙烯酸酐化明胶(GelMA)水凝胶组、复合水凝胶组小鼠创面上先分别滴加氧化铈纳米酶、GelMA水凝胶及氧化铈纳米酶-GelMA水凝胶,再用无菌手术敷贴封闭;处理因素主效应, F=31.15, P<0.001;时间因素主效应, F=29.22, P<0.001;两者交互作用, F=0.34, P=0.797; F值、 P值为组间各时间点总体比较所得; P 1值、 P 2值、 P 3值分别为对照组、氧化铈纳米酶组、GelMA水凝胶组与复合水凝胶组比较所得
    下载: 导出CSV
  • [1] GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2022,400(10369):2221-2248. DOI: 10.1016/S0140-6736(22)02185-7.
    [2] ZhaoX, LiangY, HuangY, et al. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing[J].Adv Funct Mater, 2020, 30(17): 1910748. DOI: 10.1002/adfm.201910748.
    [3] BanuS,SurD.Role of macrophage in type 2 diabetes mellitus: macrophage polarization a new paradigm for treatment of type 2 diabetes mellitus[J].Endocr Metab Immune Disord Drug Targets,2023,23(1):2-11.DOI: 10.2174/1871530322666220630093359.
    [4] MarrellaA,LagazzoA,DellacasaE,et al.3D porous gelatin/PVA hydrogel as meniscus substitute using alginate micro-particles as porogens[J].Polymers (Basel),2018,10(4):380. DOI: 10.3390/polym10040380.
    [5] JiangG,LiS,YuK,et al.A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model[J].Acta Biomater,2021,128:150-162.DOI: 10.1016/j.actbio.2021.04.010.
    [6] RenS,ZhouY,ZhengK,et al.Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering[J].Bioact Mater,2022,7:242-253.DOI: 10.1016/j.bioactmat.2021.05.037.
    [7] MaS,LuY,ZhuX,et al.Efficient modulation of electron pathways by constructing a MnO 2-x@CeO 2 interface toward advanced lithium-oxygen batteries[J].ACS Appl Mater Interfaces,2022,14(19):22104-22113.DOI: 10.1021/acsami.2c02318.
    [8] ChengX, ZhangX, SuD, et al. NO reduction by CO over copper catalyst supported on mixed CeO 2 and Fe 2O 3: catalyst design and activity test[J]. Applied Catalysis B: Environmental, 2018, 239: 485-501.DOI: 10.1016/j.apcatb.2018.08.054.
    [9] EmaT,ChoiPG,TakamiS,et al.Facet-controlled synthesis of CeO 2 nanoparticles for high-performance CeO 2 nanoparticle/SnO 2 nanosheet hybrid gas sensors[J].ACS Appl Mater Interfaces,2022,14(51):56998-57007.DOI: 10.1021/acsami.2c17444.
    [10] HosseiniM,MozafariM.Cerium oxide nanoparticles: recent advances in tissue engineering[J].Materials (Basel),2020,13(14):3072.DOI: 10.3390/ma13143072.
    [11] WangY,HuangY,FuY,et al.Reductive damage induced autophagy inhibition for tumor therapy[J].Nano Res,2023,16(4):5226-5236.DOI: 10.1007/s12274-022-5139-z.
    [12] MaiHX,SunLD,ZhangYW,et al.Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J].J Phys Chem B,2005,109(51):24380-24385.DOI: 10.1021/jp055584b.
    [13] KarahanA,AAbbasoğluA,IşıkSA,et al.Factors affecting wound healing in individuals with pressure ulcers: a retrospective study[J].Ostomy Wound Manage,2018,64(2):32-39.
    [14] DunnillC,PattonT,BrennanJ,et al.Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process[J].Int Wound J,2017,14(1):89-96.DOI: 10.1111/iwj.12557.
    [15] LiuJ,HuF,TangJ,et al.Homemade-device-induced negative pressure promotes wound healing more efficiently than VSD-induced positive pressure by regulating inflammation, proliferation and remodeling[J].Int J Mol Med,2017,39(4):879-888.DOI: 10.3892/ijmm.2017.2919.
    [16] LiangZ, LuoJ, LiuS, et al. Injectable, antibacterial, ROS scavenging and pro-angiogenic hydrogel adhesives promote chronic wound healing in diabetes via synergistic release of NMN and Mg 2+[J]. Chem Eng J, 2023, 475: 146092.
    [17] ThuHE,ZulfakarMH,NgSF.Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing[J].Int J Pharm,2012,434(1/2):375-383.DOI: 10.1016/j.ijpharm.2012.05.044.
    [18] ZhuM,LiuP,ShiH,et al.Balancing antimicrobial activity with biological safety: bifunctional chitosan derivative for the repair of wounds with Gram-positive bacterial infections[J].J Mater Chem B,2018,6(23):3884-3893.DOI: 10.1039/c8tb00620b.
    [19] KurianAG,SinghRK,PatelKD,et al.Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics[J].Bioact Mater,2022,8:267-295.DOI: 10.1016/j.bioactmat.2021.06.027.
    [20] ZhouB,JiangX,ZhouX,et al.GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances[J].Biomater Res,2023,27(1):86.DOI: 10.1186/s40824-023-00422-6.
    [21] NegutI,GrumezescuV,GrumezescuAM.Treatment strategies for infected wounds[J].Molecules,2018,23(9):2392.DOI: 10.3390/molecules23092392.
    [22] KorsvikC,PatilS,SealS,et al.Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles[J].Chem Commun (Camb),2007(10):1056-1058.DOI: 10.1039/b615134e.
    [23] AlsharifNB,SamuGF,SáringerS,et al.Antioxidant colloids via heteroaggregation of cerium oxide nanoparticles and latex beads[J].Colloids Surf B Biointerfaces,2022,216:112531.DOI: 10.1016/j.colsurfb.2022.112531.
    [24] KettigerH,SchipanskiA,WickP,et al.Engineered nanomaterial uptake and tissue distribution: from cell to organism[J].Int J Nanomedicine,2013,8:3255-3269.DOI: 10.2147/IJN.S49770.
    [25] YueK,Trujillo-de SantiagoG,AlvarezMM,et al.Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J].Biomaterials,2015,73:254-271.DOI: 10.1016/j.biomaterials.2015.08.045.
    [26] LeiK, SunY, SunC, et al. Fabrication of a controlled in situ forming polypeptide hydrogel with a good biological compatibility and shapeable property[J]. ACS Appl Bio Mater, 2019,2(4):1751-1761. DOI: 10.1021/acsabm.9b00157.
    [27] RamburrunP, KhanRA, ChoonaraYE. Design, preparation, and functionalization of nanobiomaterials for enhanced efficacy in current and future biomedical applications[J]. Nanotechnology Reviews, 2022, 11(1): 1802-1826.DOI: 10.1515/ntrev-2022-0106.
    [28] SorgH,TilkornDJ,HagerS,et al.Skin wound healing: an update on the current knowledge and concepts[J].Eur Surg Res,2017,58(1/2):81-94.DOI: 10.1159/000454919.
    [29] LiangY,HeJ,GuoB.Functional hydrogels as wound dressing to enhance wound healing[J].ACS Nano,2021,15(8):12687-12722.DOI: 10.1021/acsnano.1c04206.
    [30] LiY,BiX,WuM,et al.Adjusting the stiffness of a cell-free hydrogel system based on tissue-specific extracellular matrix to optimize adipose tissue regeneration[J/OL].Burns Trauma,2023,11:tkad002[2024-01-25].https://pubmed.ncbi.nlm.nih.gov/36873282/. DOI: 10.1093/burnst/tkad002.
    [31] HanZ,DengL,ChenS,et al.Zn 2+-loaded adhesive bacterial cellulose hydrogel with angiogenic and antibacterial abilities for accelerating wound healing[J/OL].Burns Trauma,2023,11:tkac048[2024-01-25].https://pubmed.ncbi.nlm.nih.gov/36751362/.DOI: 10.1093/burnst/tkac048.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  18
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 网络出版日期:  2024-02-26

目录

    /

    返回文章
    返回