留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

糖尿病足溃疡合并下肢血管病变的外科诊疗全国专家共识(2024版)

中国老年医学学会烧创伤分会 中华医学会烧伤外科学分会 中国医师协会创面 修复专业委员会

赵书明, 刘娜, 刘学亮, 等. 彩色多普勒超声辅助下超薄胸背动脉穿支皮瓣的切取方案及临床应用效果[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 281-288. DOI: 10.3760/cma.j.cn501225-20231012-00111.
引用本文: 中国老年医学学会烧创伤分会, 中华医学会烧伤外科学分会, 中国医师协会创面修复专业委员会. 糖尿病足溃疡合并下肢血管病变的外科诊疗全国专家共识(2024版)[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 206-220. DOI: 10.3760/cma.j.cn501225-20231122-00202.
Zhao SM,Liu N,Liu XL,et al.Cutting scheme and clinical application effects of ultrathin thoracodorsal artery perforator flap assisted by color Doppler ultrasound[J].Chin J Burns Wounds,2024,40(3):281-288.DOI: 10.3760/cma.j.cn501225-20231012-00111.
Citation: Burns and Trauma Branch of Chinese Geriatrics Society,Chinese Burn Association,Wound Repair Professional Committee of Chinese Medical Doctor Association.National expert consensus on the diagnosis and surgical treatment of diabetic foot ulcers complicated with lower extremity vasculopathy (2024 version)[J].Chin J Burns Wounds,2024,40(3):206-220.DOI: 10.3760/cma.j.cn501225-20231122-00202.

糖尿病足溃疡合并下肢血管病变的外科诊疗全国专家共识(2024版)

doi: 10.3760/cma.j.cn501225-20231122-00202
基金项目: 

国家自然科学基金青年科学基金项目 81901966

陕西省重点研发计划一般项目 2022SF-047

详细信息

    通信作者:胡大海,空军军医大学第一附属医院全军烧伤中心,烧伤与皮肤外科,西安 710032,Email: hudhai@fmmu.edu.cn黄跃生,南方科技大学医院创面修复科 南方科技大学医学院创面修复与再生医学研究所,深圳 518055,Email: yshuangtmmu@163.com付小兵,解放军总医院医学创新研究部创伤修复与组织再生研究中心,北京 100853,Email: fuxiaobing@vip.sina.com

National expert consensus on the diagnosis and surgical treatment of diabetic foot ulcers complicated with lower extremity vasculopathy (2024 version)

Funds: 

Youth Science Fund Project of National Natural Science Foundation of China 81901966

General Project of Key Research and Development Program of Shaanxi Province of China 2022SF-047

  • 摘要: 糖尿病足溃疡合并下肢血管病变具有发病率高、愈合缓慢、预后差的特点,如不经规范治疗易导致截肢甚至危及生命。针对合并下肢血管病变的治疗对改善糖尿病足溃疡的愈合进程至关重要,在临床实践中逐渐得到重视。近年来,关于糖尿病足溃疡合并下肢血管病变的临床研究已见诸多报道,为了进一步规范临床诊疗,由中国老年医学学会烧创伤分会、中华医学会烧伤外科学分会、中国医师协会创面修复专业委员会牵头的专家组共同审议并编写了《糖尿病足溃疡合并下肢血管病变的外科诊疗全国专家共识(2024版)》。该共识以文献证据为基础,内容涵盖了糖尿病足溃疡合并下肢血管病变的疾病特征、临床诊疗循证证据以及新技术和新治疗方法的应用,旨在为临床工作者提供关于糖尿病足溃疡合并下肢血管病变最佳筛查和诊疗方法的明确指导,希望为从事糖尿病足创面治疗的医务人员提供规范性的临床实践依据。

     

  • 皮肤纤维化疾病是一类严重影响患者身心健康的疾病,可由烧创伤、手术或疾病引起 1,主要包括增生性瘢痕、瘢痕疙瘩及系统性硬化病等 2, 3, 4。皮肤纤维化疾病由于治疗周期长、个体差异大及复发率高等原因,造成了沉重的社会卫生经济负担。目前,临床仍然缺乏能有效缓解或治疗皮肤纤维化疾病的理想药物。

    皮肤纤维化疾病的主要病理特点是以胶原蛋白为主的ECM异常沉积,导致瘢痕过度增生或皮肤增厚。Fb在调节ECM稳态中发挥主要作用,其在多条信号通路(包括TGF-β、Wnt和血小板衍生生长因子信号通路)的调控下实现活化和增殖;其次,促炎性细胞因子如TNF-α、IL-1或IL-6等也可作用于Fb促进其活化和增殖 5, 6。此外,内皮细胞、巨噬细胞等其他细胞也参与皮肤纤维化疾病的发生与发展 7。近年来的相关机制研究为该疾病的治疗带来了新希望,特别是细胞代谢调节领域研究的快速进展,为研究者们提供了新的思考及探索途径。本文就有氧糖酵解相关酶和产物在皮肤纤维化疾病发生与发展中的作用及靶向有氧糖酵解治疗皮肤纤维化疾病的药物进行综述。

    糖酵解是指细胞质内葡萄糖在无氧或缺氧条件下分解为乳酸,并产生ATP的过程。在氧气充足的正常细胞中,葡萄糖分解为丙酮酸后易位至线粒体,通过三羧酸循环和氧化呼吸链产生大量的ATP 8。有氧糖酵解是指即使在氧气充足的情况下,细胞仍然倾向于糖酵解,丙酮酸经乳酸脱氢酶(lactate dehydrogenase,LDH)催化产生大量乳酸,同时抑制线粒体氧化磷酸化(oxidative phosphorylation,OXPHOS),这种现象最初在1927年由Otto Warburg于肿瘤细胞中观察到,并被命名为Warburg效应 9

    近年来研究表明,有氧糖酵解与皮肤纤维化疾病的发生与发展密切相关,有氧糖酵解不仅与Fb的增殖、活化相关,也参与ECM的过量积累 10, 11, 12。研究显示,在皮肤伤口愈合早期,有氧糖酵解可能作为一种机体自我保护机制,有利于细胞快速供能并促进伤口愈合,但是后期持续增强的有氧糖酵解会影响组织重塑,导致增生性瘢痕形成 13。研究者运用氟脱氧葡萄糖正电子发射断层扫描对5例瘢痕疙瘩患者病损处进行扫描,结果显示瘢痕疙瘩较周围正常皮肤葡萄糖聚集增加,提示瘢痕疙瘩中糖代谢发生了改变 14。后续研究显示患者瘢痕疙瘩中糖酵解标志物含量明显升高 15,瘢痕疙瘩来源的Fb中葡萄糖消耗、乳酸生成、丙酮酸激酶M2(pyruvate kinase M2,PKM2)及Ⅰ型胶原水平均高于正常皮肤Fb 16, 17, 18。系统性硬化病患者Fb中的糖酵解相关酶储量增加,表明这些细胞在OXPHOS受损的条件下糖酵解水平升高,并产生更多的乳酸 19, 20。针对小鼠ECM致密处的足垫皮肤和ECM菲薄的腹部皮肤基因测序结果显示,ECM致密处糖酵解相关分子基因表达水平上调 13。这些研究显示,有氧糖酵解在皮肤损伤发生时启动,在整个损伤修复过程中发挥重要作用,但组织重塑期持续增强的有氧糖酵解导致了皮肤纤维化疾病的发生。

    有氧糖酵解在皮肤纤维化疾病中通过促进乳酸生成,调节缺氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)的表达,增强PKM2、葡萄糖转运蛋白1(glucose transporter 1,GLUT1)及磷酸甘油酸激酶1(phosphoglycerate kinase 1,PGK1)的表达,刺激Fb活化和增殖、内皮-间质转化及胶原蛋白合成,从而在皮肤纤维化疾病的发生与发展过程中发挥重要作用。见 图1

    注:α-SMA为α平滑肌肌动蛋白,PDK为丙酮酸脱氢酶激酶,PDH为丙酮酸脱氢酶,TCA为三羧酸循环,TGF-β为转化生长因子β

    乳酸由丙酮酸经LDH催化产生,通过单羧酸转运蛋白转运。在纤维化组织中,糖酵解水平的升高导致乳酸大量堆积,促进Fb活化、增殖及内皮-间质转化,增加ECM分泌。有研究表明,人瘢痕疙瘩中央的Fb中LDH、单羧酸转运蛋白4表达水平升高 15,这些Fb较正常真皮Fb消耗更多的葡萄糖,产生更多乳酸 21。系统性硬化病患者真皮中的Fb有氧糖酵解增强导致乳酸释放增加,随后细胞外酸化促进内皮-间质转化,加重了系统性硬化病中的组织纤维化 20。研究者在急性肾损伤小鼠模型中观察到,增强的有氧糖酵解产生的乳酸被肾Fb摄取,诱导Fb活化为肌Fb,引起ECM堆积 22。TGF-β 1在Fb转分化为肌Fb中起重要作用,是主要的促纤维化因子之一 23,其活化依赖于细胞微环境中的蛋白酶、pH或活性氧 24。大量堆积的乳酸可以通过改变人肺Fb微环境pH激活TGF-β 1 25。同时,乳酸可加快多种癌细胞系增殖期细胞中有丝分裂的完成,缩短细胞倍增时间,提高增殖效率 26。有关肾纤维化的研究表明,乳酸可加快小鼠肾间质Fb的增殖 22。进一步的研究揭示了多种癌细胞系和人胚胎肾细胞内乳酸浓度随有丝分裂的进行而增加,乳酸通过在小泛素样修饰物特异性蛋白酶1活性位点与锌形成复合物,结合并抑制小泛素样修饰物特异性蛋白酶1,这一作用稳定了后期促进复合物/细胞周期体亚基4上2个残基的小泛素化修饰,驱动了泛素结合酶E2与后期促进复合物/细胞周期体的结合,刺激细胞周期蛋白B1和分离酶抑制蛋白的定时降解,加快了细胞增殖 26。二氯乙酸钠是线粒体丙酮酸脱氢酶激酶(pyruvate dehydrogenase kinase,PDK)的抑制剂,可优先驱动线粒体氧化丙酮酸拮抗乳酸的产生,从而维持细胞周期蛋白B1和分离酶抑制蛋白的稳定,延长有丝分裂的时间,减缓细胞增殖 26

    HIF-1α是调节HIF-1活性的主要亚单位,其可显著提高多种细胞包括Fb的糖酵解水平 27。研究者在小鼠胚胎Fb中观察到,HIF-1会上调 PDK1基因表达,抑制丙酮酸脱氢酶,进一步抑制三羧酸循环,使葡萄糖代谢物(丙酮酸)由OXPHOS反应转变为糖酵解 28。GLUT对葡萄糖的吸收和转运至关重要,其中GLUT1是分布最为广泛的GLUT。HIF-1作用于多种癌细胞 GLUT1基因的增强子,上调其表达,升高糖酵解水平 29。此外,HIF-1α可直接促进Fb活化。关于人肺纤维化的研究表明,肌Fb中6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶3(6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3,PFKFB3)表达增加使得糖酵解水平升高,导致三羧酸循环中间产物琥珀酸水平上调,琥珀酸可稳定HIF-1α的结构,染色质免疫沉淀试验证实HIF-1α在经TGF-β 1处理后直接结合于α平滑肌肌动蛋白基因的启动子区域,促进人肺Fb转分化为肌Fb 10

    PKM2是糖酵解中催化葡萄糖生成丙酮酸的主要限速酶之一。人瘢痕疙瘩Fb中的PKM2在低氧刺激下较在正常Fb中的表达升高 30。人增生性瘢痕来源的内源性多肽-增生性瘢痕失调多肽1通过与黏着斑激酶和PKM2结合,下调两者活性,并抑制Smad2磷酸化,达到抑制增生性瘢痕Fb增殖,促进Fb凋亡,降低S期Fb比例及减少胶原合成的作用 31

    PKM2以4种不同的酶促状态存在:无活性单体、几乎无活性的二聚体、无活性T态四聚体和活性R态四聚体,四者之间的比例决定PKM2最终的功能 32。目前,关于增大PKM2四聚体占比在不同组织纤维化中的作用机制有不同的研究结果。有研究显示,四氯化碳诱导的小鼠肝纤维化模型中肝Fb的PKM2表达上调,敲除 PKM2基因或使PKM2四聚体化会显著抑制体外小鼠肝Fb的活化和增殖 33。在选择性PKM2四聚体化激活剂焦磷酸四乙酯-46作用下,小鼠主动脉内皮细胞产生较低浓度的乳酸,抑制了体内外的内皮-间质转化 34。然而,PKM2四聚体在人纤维化肺组织中的Fb内表达上调,PKM2四聚体可与Smad7形成络合物,阻断Smad7与TGF-β 1Ⅰ型受体结合,抑制TGF-β 1Ⅰ型受体泛素化,使其保持稳定,从而增强TGF-β 1信号通路转导,促进纤维化进程 35。综合以上研究,考虑PKM2在纤维化中发挥不同作用的原因可能基于以下2点:(1)上述研究均未对PKM2四聚体的活性状态进行区分,因此产生了不同的研究结果;(2)PKM2不同构象调控不同的纤维化信号通路,这些信号通路同时受纤维化发展阶段中其他分子的调控。因此,PKM2不同构象在纤维化中的具体作用机制仍需进一步研究明确。

    研究显示,烧伤患者皮肤形成的瘢痕疙瘩组织中糖酵解和GLUT1表达增强 36。有研究表明,TGF-β 1在小鼠原代肝Fb中可通过经典和非经典通路上调GLUT1的表达,从而促进肝纤维化,通过根皮素抑制GLUT1则可逆转TGF-β 1对肝Fb迁移和增殖的影响,并延迟肝Fb转分化为肌Fb的过程;动物实验结果显示,腹腔注射根皮素缓解了四氯化碳诱导的小鼠肝纤维化 37

    PGK1在糖酵解过程中催化1,3-二磷酸甘油酸转变成3-磷酸甘油酸,并产生ATP。研究者观察到PGK1在人瘢痕疙瘩组织和瘢痕疙瘩Fb中均高表达,敲除 PGK1基因后,瘢痕疙瘩Fb的增殖、迁移、侵袭和Ⅰ型胶原表达均受到抑制,并且磷脂酰肌醇-3-激酶(phosphoinositide 3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)通路的磷酸化被显著抑制,在PI3K抑制剂LY294002作用于瘢痕疙瘩Fb后,GLUT1、LDHA和Ⅰ型胶原的表达均下调,研究者推测PGK1通过PI3K/Akt途径介导上述基因在瘢痕疙瘩Fb中的表达 38

    在皮肤纤维化疾病的发生与发展过程中,有氧糖酵解参与并发挥了重要作用,以抑制有氧糖酵解为治疗靶点的药物为皮肤纤维化疾病提供了新的治疗思路。抑制有氧糖酵解的药物通过靶向有氧糖酵解相关酶和综合抑制有氧糖酵解发挥作用。

    研究显示,紫草素通过抑制PKM2下调糖酵解水平并抑制核苷酸结合寡聚化结构域样受体热蛋白结构域相关蛋白3介导的炎症反应,改善了小鼠烧伤创面的异常愈合,防止了瘢痕疙瘩的形成 36。另有研究表明,紫草素可降低机械通气诱导的肺纤维化小鼠肺泡灌洗液中的乳酸和Ⅰ型原胶原羟基端延长肽,减轻肺组织中的胶原沉积,抑制小鼠肺纤维化 39。2-脱氧-D-葡萄糖(2-deoxy-D-glucose,2-DG)是己糖激酶-2的抑制剂 11,研究者通过构建人真皮原代Fb的Smad3驱动荧光素酶报告基因,使用2-DG抑制糖酵解可下调由TGF-β 1诱导的 Smad3依赖性转录,表明2-DG可下调ECM水平,从而改善皮肤纤维化 13。Li等 40关于瘢痕疙瘩的研究表明,2-DG可以剂量和时间依赖的方式抑制人瘢痕疙瘩Fb的增殖。3-(3-吡啶基)-1-(4-吡啶基)-2-丙烯-1-酮是PFKFB3的抑制剂 10,可缓解由TGF-β 1刺激人真皮Fb发生的胶原沉积 19。草氨酸盐可通过竞争性结合LDH而后抑制LDH 22,继而减少小鼠肾小管上皮细胞的乳酸生成,抑制叶酸诱导损伤后的小鼠肾Fb活化和增殖 22。化合物408可抑制LDH5并逆转TGF-β 1介导的人原代肺Fb中代谢方式向有氧糖酵解的转变 41。木蝴蝶素A通过抑制LDHA下调人肝Fb内的糖酵解,抑制肝Fb收缩,从而缓解肝纤维化 42

    目前研究表明,二甲双胍可下调Warburg效应的关键因子HIF-1α、GLUT1、PDK1、己糖激酶和LDH,在长时程快速心房起搏诱导的犬慢性房颤模型中,通过口服给予二甲双胍,缓解了犬心房纤维化 43。另有研究表明,二甲双胍通过调节人肺Fb腺苷酸激活蛋白激酶/哺乳动物雷帕霉素靶蛋白途径抑制人肺Fb胶原合成 44。3-溴丙酮酸是一种小分子烷化剂,有研究者在单侧输尿管结扎诱导的小鼠肾纤维化模型中,通过腹腔注射3-溴丙酮酸,使得小鼠肾Fb中有氧糖酵解相关酶己糖激酶-2、LDHA和PKM2的表达水平下调,小鼠肾Fb的活化、增殖和ECM的合成均受到抑制,从而缓解了小鼠肾纤维化 45。博来霉素诱导的小鼠肺纤维化研究表明,血管活性肽可通过血管活性肽-MAS相关G蛋白偶联受体D轴下调小鼠肺Fb中己糖激酶-2、PFKFB3表达水平,抑制糖酵解,并缓解博来霉素诱导的小鼠肺纤维化 46。雷公藤红素可下调糖酵解酶(如GLUT1、己糖激酶-2、LDHA、PKM2)和相关信号蛋白(如Akt、HIF-1α、哺乳动物雷帕霉素靶蛋白)的表达水平,抑制Warburg效应,减轻小鼠非酒精性脂肪性肝病肝脏纤维化 47

    有氧糖酵解在皮肤损伤发生时同步启动,持续存在于整个损伤修复过程中,后期不断增强的有氧糖酵解打破了组织重塑期的能量代谢平衡,通过多种复杂机制促使纤维化发生。使用有氧糖酵解相关酶的抑制剂或其他小分子化合物及目前已经研制出的药物抑制有氧糖酵解,可达到抑制皮肤纤维化的目的,说明有氧糖酵解参与皮肤纤维化的过程并在其中发挥重要作用,抑制有氧糖酵解可以为皮肤纤维化疾病的防治提供一个新方向。但是,尽管目前已有许多关于有氧糖酵解促纤维化相关机制的研究报道,但其大多着眼于内脏器官纤维化,关于皮肤纤维化的研究仍非常有限,缺乏精准的信号通路转导、蛋白相互作用关系及皮肤纤维化疾病发生、发展和稳定过程中的持续监测数据。因此,有氧糖酵解促进皮肤纤维化疾病发生与发展的具体及关键机制的揭秘和整个疾病发展过程中的变化情况亟待探索。相关机制的深入研究会有助于筛选更好的靶向有氧糖酵解的治疗药物,从而为皮肤纤维化疾病提供更精准、更有效的临床治疗方法。

    所有编写组成员均声明不存在利益冲突,无商业组织向本共识编写组支付费用。本共识制订过程中需要的资金均来自本文著录的基金项目,且推荐意见未受资助影响
  • 参考文献(84)

    [1] ArmstrongDG, BoultonAJM, BusSA. Diabetic foot ulcers and their recurrence[J]. N Engl J Med, 2017, 376(24): 2367-2375. DOI: 10.1056/NEJMra1615439.
    [2] ZhangYQ, LazzariniPA, McphailSM, et al. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016[J]. Diabetes Care, 2020, 43(5): 964-974. DOI: 10.2337/dc19-1614.
    [3] MorbachS,FurchertH,GröblinghoffU,et al.Long-term prognosis of diabetic foot patients and their limbs: amputation and death over the course of a decade[J].Diabetes Care,2012,35(10):2021-2027.DOI: 10.2337/dc12-0200.
    [4] WagnerFWJr.The dysvascular foot: a system for diagnosis and treatment[J].Foot Ankle,1981,2(2):64-122.DOI: 10.1177/107110078100200202.
    [5] LipskyBA,SennevilleÉ,AbbasZG,et al.Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update)[J].Diabetes Metab Res Rev,2020,36Suppl 1:Se3280.DOI: 10.1002/dmrr.3280.
    [6] LaveryLA,ArmstrongDG,HarklessLB.Classification of diabetic foot wounds[J].J Foot Ankle Surg,1996,35(6):528-531.DOI: 10.1016/s1067-2516(96)80125-6.
    [7] InceP,AbbasZG,LutaleJK,et al.Use of the SINBAD classification system and score in comparing outcome of foot ulcer management on three continents[J].Diabetes Care,2008,31(5):964-967.DOI: 10.2337/dc07-2367.
    [8] SrMills JL, ConteMS, ArmstrongDG,et al.The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: risk stratification based on wound, ischemia, and foot infection (WIfI)[J].J Vasc Surg,2014,59(1):220-234.e1-2.DOI: 10.1016/j.jvs.2013.08.003.
    [9] NorgrenL, HiattWR, DormandyJA, et al. Inter-society consensus for the management of peripheral arterial disease (TASC Ⅱ)[J]. J Vasc Surg, 2007, 45 Suppl S: S5-67. DOI: 10.1016/j.jvs.2006.12.037.
    [10] GBD 2021 Diabetes Collaborators.Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021[J].Lancet,2023,402(10397):203-234.DOI: 10.1016/S0140-6736(23)01301-6.
    [11] 管珩,刘志民,李光伟,等.50岁以上糖尿病人群周围动脉闭塞性疾病相关因素分析[J].中华医学杂志,2007,87(1):23-27.DOI: 10.3760/j:issn:0376-2491.2007.01.008.
    [12] UçkayI,GarianiK,PatakyZ,et al.Diabetic foot infections: state-of-the-art[J].Diabetes Obes Metab,2014,16(4):305-316.DOI: 10.1111/dom.12190.
    [13] BianchettiG, RizzoGE, SerantoniC, et al. Spatial reorganization of liquid crystalline domains of red blood cells in type 2 diabetic patients with peripheral artery disease[J]. Int J Mol Sci, 2022,23(19):11126. DOI: 10.3390/ijms231911126.
    [14] LangeS,DiehmC,DariusH,et al.High prevalence of peripheral arterial disease and low treatment rates in elderly primary care patients with diabetes[J].Exp Clin Endocrinol Diabetes,2004,112(10):566-573.DOI: 10.1055/s-2004-830408.
    [15] NickinsonATO, ColesB, ZaccardiF, et al. Missed opportunities for timely recognition of chronic limb threatening ischaemia in patients undergoing a major amputation: a population based cohort study using the UK's Clinical Practice Research Datalink[J]. Eur J Vasc Endovasc Surg, 2020, 60(5): 703-710. DOI: 10.1016/j.ejvs.2020.05.010.
    [16] AndrosG.Diagnostic and therapeutic arterial interventions in the ulcerated diabetic foot[J].Diabetes Metab Res Rev,2004,20 Suppl 1:S29-33.DOI: 10.1002/dmrr.468.
    [17] BoykoEJ.How to use clinical signs and symptoms to estimate the probability of limb ischaemia in patients with a diabetic foot ulcer[J].Diabetes Metab Res Rev,2020,36Suppl 1:Se3241.DOI: 10.1002/dmrr.3241.
    [18] GershaterMA,LöndahlM,NybergP,et al.Complexity of factors related to outcome of neuropathic and neuroischaemic/ischaemic diabetic foot ulcers: a cohort study[J].Diabetologia,2009,52(3):398-407.DOI: 10.1007/s00125-008-1226-2.
    [19] ReardonR,SimringD,KimB,et al.The diabetic foot ulcer[J].Aust J Gen Pract,2020,49(5):250-255.DOI: 10.31128/AJGP-11-19-5161.
    [20] LonderoLS,LindholtJS,ThomsenMD,et al.Pulse palpation is an effective method for population-based screening to exclude peripheral arterial disease[J].J Vasc Surg,2016,63(5):1305-1310.DOI: 10.1016/j.jvs.2015.11.044.
    [21] American Diabetes Association. 10. Microvascular complications and foot care: Standards of Medical Care in Diabetes-2018[J]. Diabetes Care, 2018, 41 (Suppl 1): S105-118. DOI: 10.2337/dc18-S010.
    [22] ArmstrongDW,TobinC,MatangiMF.The accuracy of the physical examination for the detection of lower extremity peripheral arterial disease[J].Can J Cardiol,2010,26(10):e346-350.DOI: 10.1016/s0828-282x(10)70467-0.
    [23] PolonskyTS, McdermottMM. Lower extremity peripheral artery disease without chronic limb-threatening ischemia: a review[J]. JAMA, 2021, 325(21): 2188-2198. DOI: 10.1001/jama.2021.2126.
    [24] XuDC,LiJ,ZouLL,et al.Sensitivity and specificity of the ankle--brachial index to diagnose peripheral artery disease: a structured review[J].Vasc Med,2010,15(5):361-369.DOI: 10.1177/1358863X10378376.
    [25] HirschAT,HaskalZJ,HertzerNR,et al.ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): executive summary a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease) endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation[J].J Am Coll Cardiol,2006,47(6):1239-1312.DOI: 10.1016/j.jacc.2005.10.009.
    [26] Gerhard-HermanMD, GornikHL, BarrettC, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines[J]. Circulation, 2017, 135(12): e726-e779. DOI: 10.1161/CIR.0000000000000471.
    [27] ForsytheRO, ApelqvistJ, BoykoEJ, et al. Effectiveness of bedside investigations to diagnose peripheral artery disease among people with diabetes mellitus: a systematic review[J]. Diabetes Metab Res Rev, 2020, 36Suppl 1:Se3277. DOI: 10.1002/dmrr.3277.
    [28] HøyerC, StrandbergJ, Overvad JordansenMK, et al. The ability of the toe-brachial index to predict the outcome of treadmill exercise testing in patients with a normal resting ankle-brachial index[J]. Ann Vasc Surg, 2020, 64: 263-269. DOI: 10.1016/j.avsg.2019.10.041.
    [29] LeenstraB, de KleijnR, KuppensG, et al. Photo-optical transcutaneous oxygen tension measurement is of added value to predict diabetic foot ulcer healing: an observational study[J]. J Clin Med, 2020, 9(10):3291. DOI: 10.3390/jcm9103291.
    [30] American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2020[J]. Diabetes Care, 2020, 43 (Suppl 1): S14-31. DOI: 10.2337/dc20-S002.
    [31] PieruzziL, NapoliV, GorettiC, et al. Ultrasound in the modern management of the diabetic foot syndrome: a multipurpose versatile toolkit[J]. Int J Low Extrem Wounds, 2020, 19(4): 315-333. DOI: 10.1177/1534734620948351.
    [32] CollinsR,BurchJ,CrannyG,et al.Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review[J].BMJ,2007,334(7606):1257.DOI: 10.1136/bmj.39217.473275.55.
    [33] LiangHL. Doppler flow measurement of lower extremity arteries adjusted by pulsatility index[J]. AJR Am J Roentgenol, 2020, 214(1): 10-17. DOI: 10.2214/AJR.19.21280.
    [34] OferA,NiteckiSS,LinnS,et al.Multidetector CT angiography of peripheral vascular disease: a prospective comparison with intraarterial digital subtraction angiography[J].AJR Am J Roentgenol,2003,180(3):719-724.DOI: 10.2214/ajr.180.3.1800719.
    [35] MenkeJ,LarsenJ.Meta-analysis: accuracy of contrast-enhanced magnetic resonance angiography for assessing steno-occlusions in peripheral arterial disease[J].Ann Intern Med,2010,153(5):325-334.DOI: 10.7326/0003-4819-153-5-201009070-00007.
    [36] Varga-SzemesA,PenmetsaM,EmrichT,et al.Diagnostic accuracy of non-contrast quiescent-interval slice-selective (QISS) MRA combined with MRI-based vascular calcification visualization for the assessment of arterial stenosis in patients with lower extremity peripheral artery disease[J].Eur Radiol,2021,31(5):2778-2787.DOI: 10.1007/s00330-020-07386-4.
    [37] HentschA,AschauerMA,BalzerJO,et al.Gadobutrol-enhanced moving-table magnetic resonance angiography in patients with peripheral vascular disease: a prospective, multi-centre blinded comparison with digital subtraction angiography[J].Eur Radiol,2003,13(9):2103-2114.DOI: 10.1007/s00330-003-1844-5.
    [38] JeonBJ,ChoiHJ,KangJS,et al.Comparison of five systems of classification of diabetic foot ulcers and predictive factors for amputation[J].Int Wound J,2017,14(3):537-545.DOI: 10.1111/iwj.12642.
    [39] Monteiro-SoaresM,RussellD,BoykoEJ,et al.Guidelines on the classification of diabetic foot ulcers (IWGDF 2019)[J].Diabetes Metab Res Rev,2020,36Suppl 1:Se3273.DOI: 10.1002/dmrr.3273.
    [40] DuttaA, BhansaliA, RastogiA. Early and intensive glycemic control for diabetic foot ulcer healing: a prospective observational nested cohort study[J]. Int J Low Extrem Wounds, 2023,22(3):578-587. DOI: 10.1177/15347346211033458.
    [41] LinX,ChenYY,LuW,et al.Ultrasonography evaluation on the protective effect of combination therapy of beraprost sodium and aspirin on arteries occlusion and stiffness in patients with type 2 diabetes mellitus - a prospective, randomized study[J].BMC Endocr Disord,2022,22(1):87.DOI: 10.1186/s12902-022-01007-5.
    [42] DeedwaniaP.Hypertension, dyslipidemia, and insulin resistance in patients with diabetes mellitus or the cardiometabolic syndrome: benefits of vasodilating β-blockers[J].J Clin Hypertens (Greenwich),2011,13(1):52-59.DOI: 10.1111/j.1751-7176.2010.00386.x.
    [43] SagarRC,NaseemKM,AjjanRA.Antiplatelet therapies in diabetes[J].Diabet Med,2020,37(5):726-734.DOI: 10.1111/dme.14291.
    [44] AjjanRA,KietsirirojeN,BadimonL,et al.Antithrombotic therapy in diabetes: which, when, and for how long?[J].Eur Heart J,2021,42(23):2235-2259.DOI: 10.1093/eurheartj/ehab128.
    [45] GrazianiL,SilvestroA,BertoneV,et al.Vascular involvement in diabetic subjects with ischemic foot ulcer: a new morphologic categorization of disease severity[J].Eur J Vasc Endovasc Surg,2007,33(4):453-460.DOI: 10.1016/j.ejvs.2006.11.022.
    [46] HinchliffeRJ,BrownriggJRW,AndrosG,et al.Effectiveness of revascularization of the ulcerated foot in patients with diabetes and peripheral artery disease: a systematic review[J].Diabetes Metab Res Rev,2016,32 Suppl 1:S136-144.DOI: 10.1002/dmrr.2705.
    [47] HoulindK,ChristensenJK,JepsenJM.Vein arterialization for lower limb revascularization[J].J Cardiovasc Surg (Torino),2016,57(2):266-272.
    [48] GuptaPK,ShivashankarP,RajkumarM,et al.Label extension, single-arm, phase Ⅲ study shows efficacy and safety of stempeucel ® in patients with critical limb ischemia due to atherosclerotic peripheral arterial disease[J].Stem Cell Res Ther,2023,14(1):60.DOI: 10.1186/s13287-023-03292-w.
    [49] BhatMA,ZarooMI,DarziMA.Omental transplantation for critical limb ischemia in Buerger's disease[J].Plast Reconstr Surg,2007,119(6):1979-1980.DOI: 10.1097/01.prs.0000259775.68749.4a.
    [50] MarsicoG, Martin-SaldañaS, PanditA. Therapeutic biomaterial approaches to alleviate chronic limb threatening ischemia[J]. Adv Sci (Weinh), 2021, 8(7): 2003119. DOI: 10.1002/advs.202003119.
    [51] FagliaE,Dalla PaolaL,ClericiG,et al.Peripheral angioplasty as the first-choice revascularization procedure in diabetic patients with critical limb ischemia: prospective study of 993 consecutive patients hospitalized and followed between 1999 and 2003[J].Eur J Vasc Endovasc Surg,2005,29(6):620-627.DOI: 10.1016/j.ejvs.2005.02.035.
    [52] SrMills JL. Open bypass and endoluminal therapy: complementary techniques for revascularization in diabetic patients with critical limb ischaemia[J].Diabetes Metab Res Rev,2008,24 Suppl 1:S34-39.DOI: 10.1002/dmrr.829.
    [53] BredahlK,JensenLP,SchroederTV,et al.Mortality and complications after aortic bifurcated bypass procedures for chronic aortoiliac occlusive disease[J].J Vasc Surg,2015,62(1):75-82.DOI: 10.1016/j.jvs.2015.02.025.
    [54] HoVT,GologorskyR,KibrikP,et al.Open, percutaneous, and hybrid deep venous arterialization technique for no-option foot salvage[J].J Vasc Surg,2020,71(6):2152-2160.DOI: 10.1016/j.jvs.2019.10.085.
    [55] BrownriggJRW,HinchliffeRJ,ApelqvistJ,et al.Performance of prognostic markers in the prediction of wound healing or amputation among patients with foot ulcers in diabetes: a systematic review[J].Diabetes Metab Res Rev,2016,32 Suppl 1:S128-135.DOI: 10.1002/dmrr.2704.
    [56] HinchliffeRJ,BrownriggJRW,ApelqvistJ,et al.IWGDF guidance on the diagnosis, prognosis and management of peripheral artery disease in patients with foot ulcers in diabetes[J].Diabetes Metab Res Rev,2016,32 Suppl 1:S37-44.DOI: 10.1002/dmrr.2698.
    [57] CaselliA,LatiniV,LapennaA,et al.Transcutaneous oxygen tension monitoring after successful revascularization in diabetic patients with ischaemic foot ulcers[J].Diabet Med,2005,22(4):460-465.DOI: 10.1111/j.1464-5491.2005.01446.x.
    [58] ZubairM,AhmadJ.Transcutaneous oxygen pressure (TcPO 2) and ulcer outcome in diabetic patients: is there any correlation?[J].Diabetes Metab Syndr,2019,13(2):953-958.DOI: 10.1016/j.dsx.2018.12.008.
    [59] ShahP, InturiR, AnneD, et al. Wagner's classification as a tool for treating diabetic foot ulcers: our observations at a suburban teaching hospital[J]. Cureus, 2022, 14(1): e21501. DOI: 10.7759/cureus.21501.
    [60] LiMQ.Guidelines and standards for comprehensive clinical diagnosis and interventional treatment for diabetic foot in China (issue 7.0)[J].J Interv Med,2021,4(3):117-129.DOI: 10.1016/j.jimed.2021.07.003.
    [61] 谢闪亮,郭光华,闵定宏.封闭负压引流技术在创面愈合中的应用及机制研究进展[J].中华烧伤杂志,2017,33(6):397-400.DOI: 10.3760/cma.j.issn.1009-2587.2017.06.024.
    [62] BlumePA,WaltersJ,PayneW,et al.Comparison of negative pressure wound therapy using vacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers: a multicenter randomized controlled trial[J].Diabetes Care,2008,31(4):631-636.DOI: 10.2337/dc07-2196.
    [63] SaxenaV,HwangCW,HuangS,et al.Vacuum-assisted closure: microdeformations of wounds and cell proliferation[J].Plast Reconstr Surg,2004,114(5):1086-1096; discussion 1097-1098.DOI: 10.1097/01.prs.0000135330.51408.97.
    [64] JiSZ,LiuXB,HuangJ,et al.Consensus on the application of negative pressure wound therapy of diabetic foot wounds[J/OL].Burns Trauma,2021,9:tkab018[2023-11-22]. https://pubmed.ncbi.nlm.nih.gov/34212064/.DOI: 10.1093/burnst/tkab018.
    [65] GreeneAK,PuderM,RoyR,et al.Microdeformational wound therapy: effects on angiogenesis and matrix metalloproteinases in chronic wounds of 3 debilitated patients[J].Ann Plast Surg,2006,56(4):418-422.DOI: 10.1097/01.sap.0000202831.43294.02.
    [66] RupertP.Human acellular dermal wound matrix for complex diabetic wounds[J].J Wound Care,2016,25(4):S17-18, S20-21.DOI: 10.12968/jowc.2016.25.Sup4.S17.
    [67] Mendame EhyaRE, ZhangH, QiB, et al. Application and clinical effectiveness of antibiotic-loaded bone cement to promote soft tissue granulation in the treatment of neuropathic diabetic foot ulcers complicated by osteomyelitis: a randomized controlled trial[J]. J Diabetes Res, 2021, 2021: 9911072. DOI: 10.1155/2021/9911072.
    [68] LiuX, LiangJL, ZaoJ, et al. Vacuum sealing drainage treatment combined with antibiotic-impregnated bone cement for treatment of soft tissue defects and infection[J]. Med Sci Monit, 2016, 22: 1959-1965. DOI: 10.12659/msm.896108.
    [69] JiangX,XuY,JiaoGQ,et al.The combined application of antibiotic-loaded bone cement and vacuum sealing drainage for sternal reconstruction in the treatment of deep sternal wound infection[J].J Cardiothorac Surg,2022,17(1):209.DOI: 10.1186/s13019-022-01951-2.
    [70] IlizarovGA.Clinical application of the tension-stress effect for limb lengthening[J].Clin Orthop Relat Res,1990(250):8-26.
    [71] ZuoQ,GaoF,SongHH,et al.Application of Ilizarov transverse tibial bone transport and microcirculation reconstruction in the treatment of chronic ischemic diseases in lower limbs[J].Exp Ther Med,2018,16(2):1355-1359.DOI: 10.3892/etm.2018.6321.
    [72] OuSJ, XuCP, YangY, et al. Transverse tibial bone transport enhances distraction osteogenesis and vascularization in the treatment of diabetic foot[J]. Orthop Surg, 2022, 14(9): 2170-2179. DOI: 10.1111/os.13416.
    [73] 高磊,王硕,王雷,等.皮肤牵张闭合器在糖尿病足创面修复中的应用[J].中国修复重建外科杂志,2018,32(5):591-595.DOI: 10.7507/1002-1892.201801104.
    [74] 计鹏,张月,胡大海,等.皮肤牵张器联合负压封闭引流修复糖尿病足创面的临床效果[J].中华烧伤杂志,2020,36(11):1035-1039.DOI: 10.3760/cma.j.cn501120-20200621-00318.
    [75] DriverVR,LaveryLA,ReyzelmanAM,et al.A clinical trial of Integra Template for diabetic foot ulcer treatment[J].Wound Repair Regen,2015,23(6):891-900.DOI: 10.1111/wrr.12357.
    [76] LiangYP, HeJH, GuoBL. Functional hydrogels as wound dressing to enhance wound healing[J]. ACS Nano, 2021, 15(8): 12687-12722. DOI: 10.1021/acsnano.1c04206.
    [77] MasriS, ZawaniM, ZulkifleeI, et al. Cellular interaction of human skin cells towards natural bioink via 3D-bioprinting technologies for chronic wound: a comprehensive review[J]. Int J Mol Sci, 2022, 23(1):476. DOI: 10.3390/ijms23010476.
    [78] YammineK, AssiC. A meta-analysis of the outcomes of split-thickness skin graft on diabetic leg and foot ulcers[J]. Int J Low Extrem Wounds, 2019, 18(1): 23-30. DOI: 10.1177/1534734619832123.
    [79] Fitzgerald O'ConnorEJ, VeselyM, HoltPJ,et al.A systematic review of free tissue transfer in the management of non-traumatic lower extremity wounds in patients with diabetes[J].Eur J Vasc Endovasc Surg,2011,41(3):391-399.DOI: 10.1016/j.ejvs.2010.11.013.
    [80] OhTS,LeeHS,HongJP.Diabetic foot reconstruction using free flaps increases 5-year-survival rate[J].J Plast Reconstr Aesthet Surg,2013,66(2):243-250.DOI: 10.1016/j.bjps.2012.09.024.
    [81] PatelSR. Local random flaps for the diabetic foot[J]. Clin Podiatr Med Surg, 2022, 39(2): 321-330. DOI: 10.1016/j.cpm.2021.11.004.
    [82] RamanujamCL,StutoAC,ZgonisT.Use of local intrinsic muscle flaps for diabetic foot and ankle reconstruction: a systematic review[J].J Wound Care,2018,27(Suppl 9):S22-28.DOI: 10.12968/jowc.2018.27.Sup9.S22.
    [83] WangN,YangBH,WangG,et al.A meta-analysis of the relationship between foot local characteristics and major lower extremity amputation in diabetic foot patients[J].J Cell Biochem,2019,120(6):9091-9096.DOI: 10.1002/jcb.28183.
    [84] Van DammeH,LimetR.Amputation in diabetic patients[J].Clin Podiatr Med Surg,2007,24(3):569-582, x.DOI: 10.1016/j.cpm.2007.03.007.
  • 1  糖尿病足溃疡合并下肢血管病变的评估和分级方法

    注:CTA为CT血管成像,MRA为磁共振血管成像,DSA为数字减影血管造影,SINBAD为部位、缺血、神经病变、细菌感染、面积、深度,TcPO2为经皮氧分压,WIfI为创面、缺血和足感染;1 mmHg=0.133 kPa

    2  糖尿病足溃疡合并下肢血管病变的血运重建代表性治疗方案

    3  糖尿病足溃疡合并下肢血管病变的创面外科治疗方案

    表1  2009版牛津大学循证医学中心证据分级标准

    表1.   Oxford Centre for Evidence-Based Medicine: levels of evidence (2009)

    证据级别 定义
    A
    1a 基于同质RCT的系统评价
    1b 单个RCT研究
    1c 全或无病案研究
    B
    2a 基于同质队列研究的系统评价
    2b 单个队列研究(包括低质量RCT,如随访率<80%)
    2c 结果研究或生态学研究
    3a 基于同质病例对照研究的系统评价
    3b 病例对照研究
    C
    4 单个病例系列研究(包括低质量队列研究和病例对照研究)
    D
    5 基于未经严格论证的专家意见
    注:RCT为随机对照试验
    下载: 导出CSV

    表2  针对糖尿病足溃疡评估的SINBAD分级

    表2.   SINBAD classification for diabetic foot ulcer assessment

    类型 定义 评分(分)
    部位 前足掌 0
    中、后足掌 1
    缺血 足部血运正常,至少可触及1处动脉搏动 0
    有足部血流减少的临床证据 1
    神经病变 保护性感觉存在 0
    保护性感觉缺失 1
    细菌感染 0
    1
    面积 溃疡面积<1 cm 2 0
    溃疡面积≥1 cm 2 1
    深度 溃疡局限在皮肤和皮下组织 0
    溃疡深达肌肉、肌腱或更深 1
    注:表格引自文献[ 7];SINBAD为部位、缺血、神经病变、细菌感染、面积、深度
    下载: 导出CSV

    表3  针对糖尿病足溃疡患者的WIfI分级各组合的1年内截肢风险等级

    表3.   The risk grade of amputation within one year for each combination of WIfI classification for patients with diabetic foot ulcers

    创面等级 0级缺血 1级缺血 2级缺血 3级缺血
    0级足感染 1级足感染 2级足感染 3级足感染 0级足感染 1级足感染 2级足感染 3级足感染 0级足感染 1级足感染 2级足感染 3级足感染 0级足感染 1级足感染 2级足感染 3级足感染
    0 极低 极低 中等 极低 中等 中等 中等 中等
    1 极低 极低 中等 极低 中等 中等 中等 中等
    2 中等 中等 中等 中等 中等
    3 中等 中等
    注:WIfI为创面、缺血和足感染
    下载: 导出CSV

    表4  针对糖尿病足溃疡患者的WIfI分级各组合的血运重建获益等级

    表4.   The benefit grade of revascularization for each combination of WIfI classification for patients with diabetic foot ulcers

    创面等级 0级缺血 1级缺血 2级缺血 3级缺血
    0级足感染 1级足感染 2级足感染 3级足感染 0级足感染 1级足感染 2级足感染 3级足感染 0级足感染 1级足感染 2级足感染 3级足感染 0级足感染 1级足感染 2级足感染 3级足感染
    0 极低 极低 极低 极低 极低 中等 中等 中等 中等
    1 极低 极低 极低 极低 中等 中等 中等
    2 极低 极低 极低 极低 中等 中等
    3 极低 极低 极低 极低 中等 中等 中等
    注:WIfI为创面、缺血和足感染
    下载: 导出CSV
  • 糖尿病足溃疡合并下肢血管病变的外科诊疗全国专家共识(2024版)-附件表格.docx
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  3581
  • HTML全文浏览量:  213
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-22

目录

/

返回文章
返回