[1] |
LimandjajaGC,NiessenFB, ScheperRJ, et al. Hypertrophic scars and keloids: overview of the evidence and practical guide for differentiating between these abnormal scars[J]. Exp Dermatol, 2021,30(1):146-161. DOI: 10.1111/exd.14121.
|
[2] |
IshackS, LipnerSR. A review of 3-dimensional skin bioprinting techniques: applications, approaches, and trends[J]. Dermatol Surg, 2020,46(12):1500-1505. DOI: 10.1097/DSS.0000000000002378.
|
[3] |
ShetlarMR, ShetlarCL, HendricksL, et al. The use of athymic nude mice for the study of human keloids[J].Proc Soc Exp Biol Med,1985,179(4):549-552.DOI: 10.3181/00379727-179-rc3.
|
[4] |
KischerCW, PindurJ, ShetlarMR, et al. Implants of hypertrophic scars and keloids into the nude (athymic) mouse: viability and morphology[J].J Trauma,1989,29(5):672-677. DOI: 10.1097/00005373-198905000-00023.
|
[5] |
LiSY, YangJX, SunJC, et al. Adipose-derived mesenchymal stem cells alleviate hypertrophic scar by inhibiting bioactivity and inducing apoptosis in hypertrophic scar fibroblasts[J]. Cells,2022,11(24):4024. DOI: 10.3390/cells11244024.
|
[6] |
RobbEC,WaymackJP,WardenGD, et al. A new model for studying the development of human hypertrophic burn scar formation[J]. J Burn Care Rehabil,1987,8(5):371-375. DOI: 10.1097/00004630-198709000-00006.
|
[7] |
YangDY,LiSR,WuJL,et al. Establishment of a hypertrophic scar model by transplanting full-thickness human skin grafts onto the backs of nude mice[J]. Plast Reconstr Surg,2007,119(1):104-109. DOI: 10.1097/01.prs.0000244828.80490.62.
|
[8] |
MomtaziM, KwanP, DingJ,et al. A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar[J]. Wound Repair Regen,2013,21(1):77-87. DOI: 10.1111/j.1524-475X.2012.00856.x.
|
[9] |
AarabiS, BhattKA, ShiY,et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis[J]. FASEB J,2007,21(12):3250-3261.DOI: 10.1096/fj.07-8218com.
|
[10] |
DavidsonJM, YuF, OpalenikSR. Splinting strategies to overcome confounding wound contraction in experimental animal models[J]. Adv Wound Care (New Rochelle), 2013,2(4):142-148. DOI: 10.1089/wound.2012.0424.
|
[11] |
JimiS, SaparovA, KoizumiS, et al. A novel mouse wound model for scar tissue formation in abdominal muscle wall[J]. J Vet Med Sci,2021,83(12):1933-1942. DOI: 10.1292/jvms.21-0464.
|
[12] |
IbrahimMM, BondJ, BergeronA, et al. A novel immune competent murine hypertrophic scar contracture model: a tool to elucidate disease mechanism and develop new therapies[J]. Wound Repair Regen,2014,22(6):755-764.DOI: 10.1111/wrr.12238.
|
[13] |
CameronAM, AdamsDH, GreenwoodJE, et al. A novel murine model of hypertrophic scarring using subcutaneous infusion of bleomycin[J]. Plast Reconstr Surg,2014,133(1):69-78.DOI: 10.1097/01.prs.0000436821.26709.a7.
|
[14] |
XuC, ZhangH, YangC,et al. miR-125b-5p delivered by adipose-derived stem cell exosomes alleviates hypertrophic scarring by suppressing Smad2[J/OL]. Burns Trauma,2024,12:tkad064[2024-10-24].https://pubmed.ncbi.nlm.nih.gov/38765787/.DOI: 10.1093/burnst/tkad064.
|
[15] |
YuanR, DaiX, LiY, et al. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling[J]. Mol Med Rep,2021,24(5):758. DOI: 10.3892/mmr.2021.12398.
|
[16] |
GolbergA, VilligerM, KhanS, et al. Preventing scars after injury with partial irreversible electroporation[J]. J Invest Dermatol,2016,136(11):2297-2304.DOI: 10.1016/j.jid.2016.06.620.
|
[17] |
KimM, KimSW, KimH, et al. Development of a reproducible in vivo laser-induced scar model for wound healing study and management[J]. Biomed Opt Express,2019,10(4):1965-1977. DOI: 10.1364/BOE.10.001965.
|
[18] |
SonDO, HinzB. A rodent model of hypertrophic scarring: splinting of rat wounds[J]. Methods Mol Biol, 2021,2299:405-417. DOI: 10.1007/978-1-0716-1382-5_27.
|
[19] |
MarchesiniA, De FrancescoF, Mattioli-BelmonteM, et al. A new animal model for pathological subcutaneous fibrosis: surgical technique and in vitro analysis[J]. Front Cell Dev Biol,2020,8:542. DOI: 10.3389/fcell.2020.00542.
|
[20] |
ZhouS, WangW, ZhouS, et al. A novel model for cutaneous wound healing and scarring in the rat[J]. Plast Reconstr Surg,2019,143(2):468-477.DOI: 10.1097/PRS.0000000000005274.
|
[21] |
HeJ, FangB, ShanS, et al. Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1[J]. Cell Death Dis, 2021,12(3):226. DOI: 10.1038/s41419-021-03481-6.
|
[22] |
MorrisDE, WuL, ZhaoLL, et al. Acute and chronic animal models for excessive dermal scarring: quantitative studies[J]. Plast Reconstr Surg, 1997,100(3):674-681. DOI: 10.1097/00006534-199709000-00021.
|
[23] |
朱桂英,徐斌,蔡景龙.兔耳解剖特点与成功建立增生性瘢痕模型的相关性实验研究[J].中华整形外科杂志,2008,24(3): 216-219. DOI: 10.3760/j.issn:1009-4598.2008.03.014.
|
[24] |
LeeAR. Enhancing dermal matrix regeneration and biomechanical properties of 2nd degree-burn wounds by EGF-impregnated collagen sponge dressing[J]. Arch Pharm Res,2005,28(11):1311-1316. DOI: 10.1007/BF02978217.
|
[25] |
ZuW, JiangB, LiuH. Establishment of a long-term hypertrophic scar model by injection of anhydrous alcohol: a rabbit model[J]. Int J Exp Pathol,2021,102(2):105-112. DOI: 10.1111/iep.12389.
|
[26] |
RösslerS, NischwitzSP, LuzeH,et al. In vivo models for hypertrophic scars-a systematic review[J]. Medicina (Kaunas),2022,58(6):736.DOI: 10.3390/medicina58060736.
|
[27] |
HuangJ, ChenJ, WoY, et al. CO2 fractional laser combined with 5-fluorouracil ethosomal gel treatment of hypertrophic scar macro-, microscopic, and molecular mechanism of action in a rabbit animal model[J]. Rejuvenation Res,2021,24(2):131-138. DOI: 10.1089/rej.2019.2204.
|
[28] |
ChenHY, LeiY, OuYangHW, et al. Experimental comparative study of the effect of fractional CO2 laser combined with pulsed dye laser versus each laser alone on the treatment of hypertrophic scar of rabbit ears[J]. J Cosmet Dermatol,2022,21(3):979-990. DOI: 10.1111/jocd.14732.
|
[29] |
ZengJ, HuangTY, WangZZ, et al. Scar-reducing effects of gambogenic acid on skin wounds in rabbit ears[J]. Int Immunopharmacol,2021,90:107200.DOI: 10.1016/j.intimp.2020.107200.
|
[30] |
MengX, YuZ, XuW, et al. Control of fibrosis and hypertrophic scar formation via glycolysis regulation with IR780[J/OL]. Burns Trauma,2022,10:tkac015[2023-11-27].https://pubmed.ncbi.nlm.nih.gov/35769829/.DOI: 10.1093/burnst/tkac015.
|
[31] |
MonyMP, HarmonKA, HessR, et al. An updated review of hypertrophic scarring[J]. Cells,2023,12(5):678. DOI: 10.3390/cells12050678.
|
[32] |
RodriguesAE, DolivoD, LiY, et al. Comparison of thermal burn-induced and excisional-induced scarring in animal models: a review of the literature[J]. Adv Wound Care (New Rochelle),2022,11(3):150-162. DOI: 10.1089/wound.2021.0035.
|
[33] |
SummerfieldA, MeurensF, RicklinME. The immunology of the porcine skin and its value as a model for human skin[J]. Mol Immunol,2015,66(1):14-21.DOI: 10.1016/j.molimm.2014.10.023.
|
[34] |
ZhuKQ, EngravLH, GibranNS, et al. The female, red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin[J]. Burns,2003,29(7):649-664. DOI: 10.1016/s0305-4179(03)00205-5.
|
[35] |
CuttleL, KempfM, PhillipsGE, et al. A porcine deep dermal partial thickness burn model with hypertrophic scarring[J].Burns,2006,32(7):806-820.DOI: 10.1016/j.burns.2006.02.023.
|
[36] |
NischwitzSP, FinkJ, SchellneggerM, et al. The role of local inflammation and hypoxia in the formation of hypertrophic scars-a new model in the duroc pig[J]. Int J Mol Sci,2022,24(1):316. DOI: 10.3390/ijms24010316.
|
[37] |
Holzer-GeisslerJCJ, SchwingenschuhS, ZachariasM, et al. The impact of prolonged inflammation on wound healing[J]. Biomedicines,2022,10(4):856.DOI: 10.3390/biomedicines10040856.
|
[38] |
AksoyMH, VargelI, CanterIH,et al. A new experimental hypertrophic scar model in guinea pigs[J]. Aesthetic Plast Surg,2002,26(5):388-396.DOI: 10.1007/s00266-002-1121-z.
|
[39] |
KimuraT. Hairless descendants of Mexican hairless dogs: an experimental model for studying hypertrophic scars[J]. J Cutan Med Surg,2011,15(6):329-339.DOI: 10.2310/7750.2011.10081.
|