留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双样本孟德尔随机化分析探索人肠道菌群与增生性瘢痕之间的因果关系

陈文涛 王小祥 郑文炼 张伟强 毛璐佳 卓佳楠 周思彤 杨荣华

陈文涛, 王小祥, 郑文炼, 等. 基于双样本孟德尔随机化分析探索人肠道菌群与增生性瘢痕之间的因果关系[J]. 中华烧伤与创面修复杂志, 2024, 40(4): 333-341. DOI: 10.3760/cma.j.cn501225-20231129-00215.
引用本文: 陈文涛, 王小祥, 郑文炼, 等. 基于双样本孟德尔随机化分析探索人肠道菌群与增生性瘢痕之间的因果关系[J]. 中华烧伤与创面修复杂志, 2024, 40(4): 333-341. DOI: 10.3760/cma.j.cn501225-20231129-00215.
Chen WT,Wang XX,Zheng WL,et al.Exploring the causality between intestinal flora and hyperplastic scars of human based on two-sample Mendelian randomization analysis[J].Chin J Burns Wounds,2024,40(4):333-341.DOI: 10.3760/cma.j.cn501225-20231129-00215.
Citation: Chen WT,Wang XX,Zheng WL,et al.Exploring the causality between intestinal flora and hyperplastic scars of human based on two-sample Mendelian randomization analysis[J].Chin J Burns Wounds,2024,40(4):333-341.DOI: 10.3760/cma.j.cn501225-20231129-00215.

基于双样本孟德尔随机化分析探索人肠道菌群与增生性瘢痕之间的因果关系

doi: 10.3760/cma.j.cn501225-20231129-00215
基金项目: 

国家自然科学基金面上项目 82272276

重庆市中医药创新团队项目 2023090006KJZX2022WJW008

详细信息
    通讯作者:

    杨荣华,Email:21720091@qq.com

Exploring the causality between intestinal flora and hyperplastic scars of human based on two-sample Mendelian randomization analysis

Funds: 

General Program of National Natural Science Foundation of China 82272276

Chongqing Traditional Chinese Medicine Innovation Team Project 2023090006KJZX2022WJW008

More Information
  • 摘要:   目的   探究人肠道菌群与增生性瘢痕(HS)之间的因果关系。   方法   该研究为基于双样本孟德尔随机化(TSMR)分析的研究。从全基因组关联分析数据库获得人肠道菌群(18 473个样本)和HS(208 248个样本)的数据。提取已知肠道菌群门、纲、目、科和属5个水平的遗传变异基因,即单核苷酸多态性(SNP)作为工具变量,并进行连锁不平衡(LD)分析。使用PhenoScanner V2数据库进行人类基因型-表型关联分析,排除与HS不相关的肠道菌群SNP并分析获得的SNP是否为弱工具变量。采用TSMR分析的4种方法,即逆方差加权(IVW)、MR-Egger回归、加权中位数和加权模式,对肠道菌群SNP与HS之间的因果关系进行分析。绘制前述4种分析方法得出重要结果的散布图,分析肠道菌群SNP与HS的相关性。采用IVW检验和MR-Egger回归检验评估肠道菌群SNP的异质性,采用MR-Egger回归检验和MR-PRESSO离群值检验评估肠道菌群SNP的水平多效性,采用留一敏感性分析确定HS是否由肠道菌群中的单个SNP引起。对HS SNP与肠杆菌属或HS SNP与瘤胃球菌2属分别进行逆向TSMR分析,检测它们之间是否存在反向因果关系。   结果   共获得196个已知肠道菌群,属于9门、16纲、20目、32科、119属,从每个菌群中均获得多个SNP作为工具变量。LD分析显示,除rs1000888、rs12566247、rs994794外,其余肠道菌群SNP均符合遗传变异与暴露因素密切相关的假设。人类基因型-表型关联分析显示,经LD分析后获得的SNP均未被排除且均不是弱工具变量。IVW、MR-Egger回归、加权中位数和加权模式的TSMR分析显示,肠杆菌属及瘤胃球菌2属均与HS存在因果关系。其中,IVW和MR-Egger回归的森林图分析还显示,肠杆菌属的16个SNP(该菌属SNP个数下同)和瘤胃球菌2属的15个SNP(该菌属SNP个数下同)均为HS的保护因素。进一步地,IVW分析显示肠杆菌属SNP(比值比为0.62,95%置信区间为0.41~0.93, P<0.05)和瘤胃球菌2属SNP(比值比为0.62,95%置信区间为0.40~0.97, P<0.05)均与HS发生风险呈负相关。散布图显示,肠杆菌属和瘤胃球菌2属的SNP均是HS的保护因素。IVW检验和MR-Egger回归检验均显示,肠杆菌属SNP( Q值分别为5.73、5.76, P>0.05)和瘤胃球菌2属SNP( Q值分别为13.67、15.61, P>0.05)均无异质性。MR-Egger回归检验显示,肠杆菌属和瘤胃球菌2属的SNP均无水平多效性(截距分别为0.01、0.06, P>0.05);MR-PRESSO离群值检验显示,肠杆菌属和瘤胃球菌2属的SNP均无水平多效性( P>0.05)。留一敏感性分析显示,无单个肠道菌群SNP驱动HS的发生。逆向TSMR分析显示,HS SNP与肠杆菌属之间、HS SNP与瘤胃球菌2属之间均不存在任何反向因果关系(比值比分别为1.01、0.99,95%置信区间分别为0.97~1.06、0.96~1.04, P>0.05)。   结论   人肠道菌群与HS之间存在一定因果关系,肠杆菌属及瘤胃球菌2属对抑制HS有一定作用。

     

  • 1  人肠道菌群与增生性瘢痕的双样本孟德尔随机化分析假设图

    注:图中“×”指违反假设2(独立性)和假设3(限定准则);假设1指关联性

    2  人的196个肠道菌群单核苷酸多态性与增生性瘢痕因果关系的双样本孟德尔随机化分析

    注:从外到内的圆圈依次代表肠道菌群的逆方差加权的比值比和P值、MR-Egger回归的比值比和P值、加权中位数的比值比和P值、加权模式的比值比和P值,同一个圆心的不同扇环块均代表一种肠道细菌,外圈中蓝色箭头指示肠杆菌属、红色箭头指示瘤胃球菌2属

    3  逆方差加权和MR-Egger回归分析人肠杆菌属16个SNP和瘤胃球菌2属15个SNP分别与增生性瘢痕因果关系的森林图。3A.肠杆菌属;3B.瘤胃球菌2属

    注:线段中的圆点为比值比,该值>0为危险因素、<0为保护因素;SNP为单核苷酸多态性

    4  双样本孟德尔随机化分析人肠杆菌属16个SNP和瘤胃球菌2属15个SNP分别与增生性瘢痕之间因果关系的散布图。4A.肠杆菌属;4B.瘤胃球菌2属

    注:SNP为单核苷酸多态性;直线的斜率表示每种方法的因果关联,斜率为负值表明肠道菌群SNP可降低增生性瘢痕发生风险

    5  留一敏感性分析人肠杆菌属16个SNP和瘤胃球菌2属15个SNP分别与增生性瘢痕的因果关系。5A.肠杆菌属;5B.瘤胃球菌2属

    注:线段中的圆点为比值比,误差线均在0的左侧,提示结果可靠;SNP为单核苷酸多态性

  • [1] WangZC, ZhaoWY, CaoY, et al. The roles of inflammation in keloid and hypertrophic scars[J]. Front Immunol, 2020,11:603187. DOI: 10.3389/fimmu.2020.603187.
    [2] ChiangRS, BorovikovaAA, KingK, et al. Current concepts related to hypertrophic scarring in burn injuries[J]. Wound Repair Regen, 2016,24(3):466-477. DOI: 10.1111/wrr.12432.
    [3] LeeHJ, JangYJ. Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids[J]. Int J Mol Sci, 2018,19(3):711.DOI: 10.3390/ijms19030711.
    [4] 郑建新,张亚军. 二氧化碳点阵激光联合曲安奈德注射治疗增生性瘢痕的疗效[J]. 中国医疗美容,2020,10(5):84-88. DOI: 10.19593/j.issn.2095-0721.2020.05.020.
    [5] NiuM, ChenP. Crosstalk between gut microbiota and sepsis[J/OL]. Burns Trauma, 2021,9:tkab036[2023-11-29]. https://pubmed.ncbi.nlm.nih.gov/34712743/. DOI: 10.1093/burnst/tkab036.
    [6] CamposLF, TagliariE, CasagrandeT, et al. Effects of probiotics supplementation on skin wound healing in diabetic rats[J]. Arq Bras Cir Dig, 2020,33(1):e1498. DOI: 10.1590/0102-672020190001e1498.
    [7] AlamA, NeishA. Role of gut microbiota in intestinal wound healing and barrier function[J]. Tissue Barriers, 2018,6(3):1539595. DOI: 10.1080/21688370.2018.1539595.
    [8] 吴金春, 刘彦民, 苏晓灵. 肠道菌群/肠道微生态与心血管疾病发生的关系研究进展[J].解放军医学杂志,2023,48(7):851-855. DOI: 10.11855/j.issn.0577-7402.2696.2022.0830.
    [9] WaasdorpM, KromBP, BikkerFJ, et al. The bigger picture: why oral mucosa heals better than skin[J]. Biomolecules, 2021,11(8):1165.DOI: 10.3390/biom11081165.
    [10] PatelBK, PatelKH, HuangRY, et al. The gut-skin microbiota axis and its role in diabetic wound healing-a review based on current literature[J]. Int J Mol Sci, 2022, 23(4):2375. DOI: 10.3390/ijms23042375.
    [11] BurgessS, FoleyCN, AllaraE, et al. A robust and efficient method for Mendelian randomization with hundreds of genetic variants[J]. Nat Commun, 2020,11(1):376. DOI: 10.1038/s41467-019-14156-4.
    [12] LevinMG, JudyR, GillD, et al. Genetics of height and risk of atrial fibrillation: a Mendelian randomization study[J]. PLoS Med, 2020,17(10):e1003288. DOI: 10.1371/journal.pmed.1003288.
    [13] O'NeillCA, MonteleoneG, McLaughlinJT, et al. The gut-skin axis in health and disease: a paradigm with therapeutic implications[J]. Bioessays, 2016,38(11):1167-1176. DOI: 10.1002/bies.201600008.
    [14] BelkaidY, HarrisonOJ. Homeostatic immunity and the microbiota[J]. Immunity, 2017,46(4):562-576. DOI: 10.1016/j.immuni.2017.04.008.
    [15] Polkowska-PruszyńskaB, GerkowiczA, KrasowskaD. The gut microbiome alterations in allergic and inflammatory skin diseases - an update[J]. J Eur Acad Dermatol Venereol, 2020,34(3):455-464. DOI: 10.1111/jdv.15951.
    [16] BenyacoubJ, BoscoN, BlanchardC, et al. Immune modulation property of Lactobacillus paracasei NCC2461 (ST11) strain and impact on skin defences[J]. Benef Microbes, 2014,5(2):129-136. DOI: 10.3920/BM2013.0014.
    [17] PeralMC, RachidMM, GobbatoNM, et al. Interleukin-8 production by polymorphonuclear leukocytes from patients with chronic infected leg ulcers treated with Lactobacillus plantarum[J]. Clin Microbiol Infect, 2010,16(3):281-286. DOI: 10.1111/j.1469-0691.2009.02793.x.
    [18] AfoudaP, DurandGA, LagierJC, et al. Noncontiguous finished genome sequence and description of Intestinimonas massiliensis sp. nov strain GD2T, the second Intestinimonas species cultured from the human gut[J]. Microbiologyopen, 2019,8(1):e00621. DOI: 10.1002/mbo3.621.
    [19] ZhouJ, LiM, ChenQ, et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery[J]. Nat Commun, 2022,13(1):3432. DOI: 10.1038/s41467-022-31171-0.
    [20] LiuJ, ChangG, HuangJ, et al. Sodium butyrate inhibits the inflammation of lipopolysaccharide-induced acute lung injury in mice by regulating the Toll-like receptor 4/nuclear factor κB signaling pathway[J]. J Agric Food Chem, 2019,67(6):1674-1682. DOI: 10.1021/acs.jafc.8b06359.
    [21] ArpaiaN, CampbellC, FanX, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013,504(7480):451-455. DOI: 10.1038/nature12726.
    [22] HuangC, AkaishiS, HyakusokuH, et al. Are keloid and hypertrophic scar different forms of the same disorder? A fibroproliferative skin disorder hypothesis based on keloid findings[J]. Int Wound J, 2014,11(5):517-522. DOI: 10.1111/j.1742-481X.2012.01118.x.
    [23] HuangC, OgawaR. Role of inflammasomes in keloids and hypertrophic scars-lessons learned from chronic diabetic wounds and skin fibrosis[J]. Int J Mol Sci, 2022,23(12):6280.DOI: 10.3390/ijms23126820.
    [24] ZhangT, WangXF, WangZC, et al. Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation[J]. Biomed Pharmacother, 2020,129:110287. DOI: 10.1016/j.biopha.2020.110287.
    [25] La ReauAJ, SuenG. The Ruminococci: key symbionts of the gut ecosystem[J]. J Microbiol, 2018,56(3):199-208. DOI: 10.1007/s12275-018-8024-4.
    [26] LiY, ZhangSX, YinXF, et al. The gut microbiota and its relevance to peripheral lymphocyte subpopulations and cytokines in patients with rheumatoid arthritis[J]. J Immunol Res, 2021,2021:6665563. DOI: 10.1155/2021/6665563.
    [27] ZhouN, ShenY, FanL, et al. The characteristics of intestinal-barrier damage in rats with IgA nephropathy[J]. Am J Med Sci, 2020,359(3):168-176. DOI: 10.1016/j.amjms.2019.11.011.
    [28] WangT, SternesPR, GuoXK, et al. Autoimmune diseases exhibit shared alterations in the gut microbiota[J]. Rheumatology (Oxford), 2024,63(3):856-865. DOI: 10.1093/rheumatology/kead364.
    [29] Lopez-SilesM, KhanTM, DuncanSH, et al. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth[J]. Appl Environ Microbiol, 2012,78(2):420-428. DOI: 10.1128/AEM.06858-11.
    [30] MahmudMR, AkterS, TamannaSK, et al. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases[J]. Gut Microbes, 2022,14(1):2096995. DOI: 10.1080/19490976.2022.2096995.
  • 加载中
图(6)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  5
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-29

目录

    /

    返回文章
    返回