留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再生康复:物理因子对再生的作用

吴军 魏亚婷

吴军, 魏亚婷. 再生康复:物理因子对再生的作用[J]. 中华烧伤与创面修复杂志, 2024, 40(4): 301-306. DOI: 10.3760/cma.j.cn501225-20231229-00278.
引用本文: 吴军, 魏亚婷. 再生康复:物理因子对再生的作用[J]. 中华烧伤与创面修复杂志, 2024, 40(4): 301-306. DOI: 10.3760/cma.j.cn501225-20231229-00278.
Wu J,Wei YT.Regenerative rehabilitation: the effects of physical factors on regeneration[J].Chin J Burns Wounds,2024,40(4):301-306.DOI: 10.3760/cma.j.cn501225-20231229-00278.
Citation: Wu J,Wei YT.Regenerative rehabilitation: the effects of physical factors on regeneration[J].Chin J Burns Wounds,2024,40(4):301-306.DOI: 10.3760/cma.j.cn501225-20231229-00278.

再生康复:物理因子对再生的作用

doi: 10.3760/cma.j.cn501225-20231229-00278
基金项目: 

国家自然科学基金青年科学基金项目 82202458

详细信息
    通讯作者:

    吴军,Email:junwupro@126.com

Regenerative rehabilitation: the effects of physical factors on regeneration

Funds: 

Youth Science Fund Program of National Natural Science Foundation of China 82202458

More Information
  • 摘要: 创面再生修复是烧伤与创面修复外科主要的研究领域之一。近年来,随着康复治疗理念和技术的不断进步,康复治疗与创面再生修复的联系更加紧密,并由此催生出“再生康复”理念。该文对再生康复概念的形成和发展现状以及再生康复领域未来的发展和引领价值进行探讨。

     

  • 参考文献(48)

    [1] 付小兵, 程飚. 再生康复医学:新需求 新融合 新方向 [J]. 中华烧伤杂志,2018,34(2): 65-68. DOI: 10.3760/cma.j.issn.1009-2587.2018.02.001.
    [2] HeadPL. Rehabilitation considerations in regenerative medicine[J]. Phys Med Rehabil Clin N Am, 2016,27(4):1043-1054. DOI: 10.1016/j.pmr.2016.07.002.
    [3] XiaP,ShiY,WangX,et al.Advances in the application of low-intensity pulsed ultrasound to mesenchymal stem cells[J].Stem Cell Res Ther,2022,13(1):214.DOI: 10.1186/s13287-022-02887-z.
    [4] ChuG,NiuH.Knowledge mapping and global trends in the field of low-intensity pulsed ultrasound and endocrine and metabolic diseases: a bibliometric and visual analysis from 2012 to 2022[J].Front Endocrinol (Lausanne),2023,14:1237864.DOI: 10.3389/fendo.2023.1237864.
    [5] WangY,LiJ,QiuY,et al.Low-intensity pulsed ultrasound promotes periodontal ligament stem cell migration through TWIST1-mediated SDF-1 expression[J].Int J Mol Med,2018,42(1):322-330.DOI: 10.3892/ijmm.2018.3592.
    [6] KangPL,HuangHH,ChenT,et al.Angiogenesis-promoting effect of LIPUS on hADSCs and HUVECs cultured on collagen/hyaluronan scaffolds[J].Mater Sci Eng C Mater Biol Appl,2019,102:22-33.DOI: 10.1016/j.msec.2019.04.045.
    [7] WangY,LiJ,ZhouJ,et al.Low-intensity pulsed ultrasound enhances bone marrow-derived stem cells-based periodontal regenerative therapies[J].Ultrasonics,2022,121:106678.DOI: 10.1016/j.ultras.2021.106678.
    [8] LiX,ChenY,TuX,et al.Development of a three-dimensional nerve stretch growth device towards an implantable neural interface[J].Micromachines (Basel),2022,13(10):1558.DOI: 10.3390/mi13101558.
    [9] SeoBR,MooneyDJ.Recent and future strategies of mechanotherapy for tissue regenerative rehabilitation[J].ACS Biomater Sci Eng,2022,8(11):4639-4642.DOI: 10.1021/acsbiomaterials.1c01477.
    [10] BaekJ,LopezPA,LeeS,et al.Egr1 is a 3D matrix-specific mediator of mechanosensitive stem cell lineage commitment[J].Sci Adv,2022,8(15):eabm4646.DOI: 10.1126/sciadv.abm4646.
    [11] EigenbergerA,FelthausO,SchratzenstallerT,et al.The effects of shear force-based processing of lipoaspirates on white adipose tissue and the differentiation potential of adipose derived stem cells[J].Cells,2022,11(16):2543. DOI: 10.3390/cells11162543.
    [12] LiuW,JiangM,DouJ,et al.Effect of mechanical tension on the long-chain noncoding RNA expression profile of human skin regeneration[J].J Craniofac Surg,2023,34(5):1489-1492.DOI: 10.1097/SCS.0000000000009302.
    [13] MascharakS,desJardins-ParkHE,DavittMF,et al.Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring[J].Science,2021,372(6540):eaba2374. DOI: 10.1126/science.aba2374.
    [14] ShiJ,FarzanehM,KhoshnamSE.Yes-associated protein and PDZ binding motif: a critical signaling pathway in the control of human pluripotent stem cells self-renewal and differentiation[J].Cell Reprogram,2020,22(2):55-61.DOI: 10.1089/cell.2019.0084.
    [15] TeranishiM,KuroseT,NakagawaK,et al.Hypergravity enhances RBM4 expression in human bone marrow-derived mesenchymal stem cells and accelerates their differentiation into neurons[J].Regen Ther,2023,22:109-114.DOI: 10.1016/j.reth.2022.12.010.
    [16] LingensLF,RuhlT,BeierJP,et al.The effect of hypergravity, hyperbaric pressure, and hypoxia on osteogenic differentiation of adipose stem cells[J].Tissue Cell,2022,78:101886.DOI: 10.1016/j.tice.2022.101886.
    [17] HuntER,ConfidesAL,AbshireSM,et al.Massage increases satellite cell number independent of the age-associated alterations in sarcolemma permeability[J].Physiol Rep,2019,7(17):e14200.DOI: 10.14814/phy2.14200.
    [18] MillerBF,HamiltonKL,MajeedZR,et al.Enhanced skeletal muscle regrowth and remodelling in massaged and contralateral non-massaged hindlimb[J].J Physiol,2018,596(1):83-103.DOI: 10.1113/JP275089.
    [19] HettingerZR,WenY,PeckBD,et al.Mechanotherapy reprograms aged muscle stromal cells to remodel the extracellular matrix during recovery from disuse[J].Function (Oxf),2022,3(3):zqac015.DOI: 10.1093/function/zqac015.
    [20] FukadaSI,NakamuraA.Exercise/resistance training and muscle stem cells[J].Endocrinol Metab (Seoul),2021,36(4):737-744.DOI: 10.3803/EnM.2021.401.
    [21] BlocquiauxS,GorskiT,Van RoieE,et al.The effect of resistance training, detraining and retraining on muscle strength and power, myofibre size, satellite cells and myonuclei in older men[J].Exp Gerontol,2020,133:110860.DOI: 10.1016/j.exger.2020.110860.
    [22] ChenJ,ZhouR,FengY,et al.Molecular mechanisms of exercise contributing to tissue regeneration[J].Signal Transduct Target Ther,2022,7(1):383.DOI: 10.1038/s41392-022-01233-2.
    [23] SaitoY,ChikenjiTS,MatsumuraT,et al.Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors[J].Nat Commun,2020,11(1):889.DOI: 10.1038/s41467-020-14734-x.
    [24] Monemian EsfahaniA,RosenbohmJ,ReddyK,et al.Tissue regeneration from mechanical stretching of cell-cell adhesion[J].Tissue Eng Part C Methods,2019,25(11):631-640.DOI: 10.1089/ten.TEC.2019.0098.
    [25] FengL,LiB,XiY,et al.Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction[J].Am J Physiol Cell Physiol,2022,322(2):C164-C176.DOI: 10.1152/ajpcell.00344.2021.
    [26] ChenZ,LiL,WuW,et al.Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis[J].Theranostics,2020,10(14):6448-6466.DOI: 10.7150/thno.43577.
    [27] FanW,EvansRM.Exercise mimetics: impact on health and performance[J].Cell Metab,2017,25(2):242-247.DOI: 10.1016/j.cmet.2016.10.022.
    [28] SilvaFCD, IopRDR, AndradeA, et al. Effects of physical exercise on the expression of microRNAs: a systematic review[J]. J Strength Cond Res, 2020,34(1):270-280. DOI: 10.1519/JSC.0000000000003103.
    [29] SongJ,SunB,LiuS,et al.Polymerizing pyrrole coated poly (l-lactic acid-co-ε-caprolactone) (PLCL) conductive nanofibrous conduit combined with electric stimulation for long-range peripheral nerve regeneration[J].Front Mol Neurosci,2016,9:117.DOI: 10.3389/fnmol.2016.00117.
    [30] YangY,LuoR,ChaoS,et al.Improved pharmacodynamics of epidermal growth factor via microneedles-based self-powered transcutaneous electrical stimulation[J].Nat Commun,2022,13(1):6908.DOI: 10.1038/s41467-022-34716-5.
    [31] Toledano-MacíasE,Martínez-PascualMA,Hernández-BuleML.Electric currents of 448 kHz upregulate anti-senescence pathways in human dermal fibroblasts[J].J Cosmet Dermatol,2024,23(2):687-700.DOI: 10.1111/jocd.16019.
    [32] TaiG,TaiM,ZhaoM.Electrically stimulated cell migration and its contribution to wound healing[J/OL].Burns Trauma,2018,6:20[2023-12-29].https://pubmed.ncbi.nlm.nih.gov/30003115/.DOI: 10.1186/s41038-018-0123-2.
    [33] LiuM,XieD,ZengH,et al.Direct-current electric field stimulation promotes proliferation and maintains stemness of mesenchymal stem cells[J].Biotechniques,2023,74(6):293-301.DOI: 10.2144/btn-2022-0112.
    [34] ZhuF,LiuW,LiP,et al.Electric/magnetic intervention for bone regeneration: a systematic review and network meta-analysis[J].Tissue Eng Part B Rev,2023,29(3):217-231.DOI: 10.1089/ten.TEB.2022.0127.
    [35] ZhuK,ZhangL,XuX,et al.Pulsed electromagnetic fields improved peripheral nerve regeneration after delayed repair of one month[J].Bioelectromagnetics,2023,44(7/8):133-143.DOI: 10.1002/bem.22443.
    [36] MazinY,LemosC,PaivaC,et al.The role of extracorporeal shock wave therapy in the treatment of muscle injuries: a systematic review[J].Cureus,2023,15(8):e44196.DOI: 10.7759/cureus.44196.
    [37] SimplicioCL,PuritaJ,MurrellW,et al.Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine[J].J Clin Orthop Trauma,2020,11(Suppl 3):S309-318.DOI: 10.1016/j.jcot.2020.02.004.
    [38] AlshihriA, NiuW, KämmererPW, et al. The effects of shock wave stimulation of mesenchymal stem cells on proliferation, migration, and differentiation in an injectable gelatin matrix for osteogenic regeneration[J]. J Tissue Eng Regen Med,2020,14(11):1630-1640. DOI: 10.1002/term.3126.
    [39] LiHX,ZhangZC,PengJ.Low-intensity extracorporeal shock wave therapy promotes recovery of sciatic nerve injury and the role of mechanical sensitive YAP/TAZ signaling pathway for nerve regeneration[J].Chin Med J (Engl),2021,134(22):2710-2720.DOI: 10.1097/CM9.0000000000001431.
    [40] MoortgatP, AnthonissenM, Van DaeleU,et al. Shock wave therapy for wound healing and scar treatment[M/OL]//Téot L, Mustoe TA, Middelkoop E, et al. Textbook on scar management: state of the art management and emerging technologies. Cham (CH): Springer,2020[2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/36351147/. https://pubmed.ncbi.nlm.nih.gov/36351147/
    [41] SorgH,ZwetzichI,TilkornDJ,et al.Effects of extracorporeal shock waves on microcirculation and angiogenesis in the in vivo wound model of the diver box[J].Eur Surg Res,2021,62(3):134-143.DOI: 10.1159/000515737.
    [42] ChenRF,LinYN,LiuKF,et al.Compare the effectiveness of extracorporeal shockwave and hyperbaric oxygen therapy on enhancing wound healing in a streptozotocin-induced diabetic rodent model[J].Kaohsiung J Med Sci,2023,39(11):1135-1144.DOI: 10.1002/kjm2.12746.
    [43] LeeSH,KimYJ,KimYH,et al.Enhancing therapeutic efficacy of human adipose-derived stem cells by modulating photoreceptor expression for advanced wound healing[J].Stem Cell Res Ther,2022,13(1):215.DOI: 10.1186/s13287-022-02892-2.
    [44] KimSW,ImGB,KimYH,et al.Fortifying angiogenic efficacy of conditioned media using phototoxic-free blue light for wound healing[J].Bioeng Transl Med,2023,8(3):e10462.DOI: 10.1002/btm2.10462.
    [45] ChenY,LiuL,FanJ,et al.Low-level laser treatment promotes skin wound healing by activating hair follicle stem cells in female mice[J].Lasers Med Sci,2022,37(3):1699-1707.DOI: 10.1007/s10103-021-03419-6.
    [46] ChangCJ,HsiaoYC,HangN,et al.Biophotonic effects of low-level laser therapy on adipose-derived stem cells for soft tissue deficiency[J].Ann Plast Surg,2023,90(5S Suppl 2):S158-164.DOI: 10.1097/SAP.0000000000003376.
    [47] OliveiraRF,MarquioreLF,GomesC,et al.Interplay between epithelial and mesenchymal cells unveils essential proinflammatory and pro-resolutive mediators modulated by photobiomodulation therapy at 660 nm[J].Wound Repair Regen,2022,30(3):345-356.DOI: 10.1111/wrr.13010.
    [48] AsadiR,MostafaviniaA,AminiA,et al.Acceleration of a delayed healing wound repair model in diabetic rats by additive impacts of photobiomodulation plus conditioned medium of adipose-derived stem cells[J].J Diabetes Metab Disord,2023,22(2):1551-1560.DOI: 10.1007/s40200-023-01285-3.
  • 加载中
图(1)
计量
  • 文章访问数:  5173
  • HTML全文浏览量:  28
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29

目录

    /

    返回文章
    返回