[1] |
RheinwaldJG, GreenH. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells[J]. Cell, 1975,6(3):331-343. DOI: 10.1016/s0092-8674(75)80001-8.
|
[2] |
GreenH, KehindeO, ThomasJ. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting[J]. Proc Natl Acad Sci U S A, 1979,76(11):5665-5668. DOI: 10.1073/pnas.76.11.5665.
|
[3] |
Grafting of burns with cultured epithelium prepared from autologous epidermal cells[J]. Lancet, 1981,1(8211):75-78.
|
[4] |
AtiyehBS, CostagliolaM. Cultured epithelial autograft (CEA) in burn treatment: three decades later[J]. Burns, 2007,33(4):405-413. DOI: 10.1016/j.burns.2006.11.002.
|
[5] |
AllouniA, PapiniR, LewisD. Spray-on-skin cells in burns: a common practice with no agreed protocol[J]. Burns, 2013,39(7):1391-1394. DOI: 10.1016/j.burns.2013.03.017.
|
[6] |
Cooper-JonesB, VisintiniS. A noncultured autologous skin cell spray graft for the treatment of burns [M]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health, 2016:1-11.
|
[7] |
HenryS, MapulaS, GreviousM, et al. Maximizing wound coverage in full-thickness skin defects: a randomized-controlled trial of autologous skin cell suspension and widely meshed autograft versus standard autografting[J]. J Trauma Acute Care Surg, 2024,96(1):85-93. DOI: 10.1097/TA.0000000000004120.
|
[8] |
LoCH, ChongE, AkbarzadehS, et al. A systematic review: current trends and take rates of cultured epithelial autografts in the treatment of patients with burn injuries[J]. Wound Repair Regen, 2019,27(6):693-701. DOI: 10.1111/wrr.12748.
|
[9] |
Ortega-ZilicN, HunzikerT, LäuchliS, et al. EpiDex
® Swiss field trial 2004-2008[J]. Dermatology, 2010,221(4):365-372. DOI: 10.1159/000321333.
|
[10] |
CoulombB, FriteauL, BaruchJ, et al. Advantage of the presence of living dermal fibroblasts within in vitro reconstructed skin for grafting in humans[J]. Plast Reconstr Surg, 1998,101(7):1891-1903. DOI: 10.1097/00006534-199806000-00018.
|
[11] |
ShamsF, RahimpourA, VahidnezhadH, et al. The utility of dermal fibroblasts in treatment of skin disorders: a paradigm of recessive dystrophic epidermolysis bullosa[J]. Dermatol Ther, 2021,34(4):e15028. DOI: 10.1111/dth.15028.
|
[12] |
LammeEN, Van LeeuwenRT, BrandsmaK, et al. Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation[J]. J Pathol, 2000,190(5):595-603. DOI: 10.1002/(SICI)1096-9896(200004)190:5<595::AID-PATH572>3.0.CO;2-V.
|
[13] |
SteiglitzBM, MaherRJ, GratzKR, et al. The viable bioengineered allogeneic cellularized construct StrataGraft
® synthesizes, deposits, and organizes human extracellular matrix proteins into tissue type-specific structures and secretes soluble factors associated with wound healing[J]. Burns, 2024,50(2):424-432. DOI: 10.1016/j.burns.2023.06.001.
|
[14] |
CaiS, PanY, HanB, et al. Transplantation of human bone marrow-derived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands[J]. Chin Med J (Engl), 2011,124(15):2260-2268.
|
[15] |
Castro-ManrrezaME, MontesinosJJ. Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications[J]. J Immunol Res, 2015,2015:394917. DOI: 10.1155/2015/394917.
|
[16] |
BronckaersA, HilkensP, MartensW, et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis[J]. Pharmacol Ther, 2014,143(2):181-196. DOI: 10.1016/j.pharmthera.2014.02.013.
|
[17] |
Guillamat-PratsR. The role of MSC in wound healing, scarring and regeneration[J]. Cells, 2021, 10(7):1729. DOI: 10.3390/cells10071729.
|
[18] |
LiubaviciuteA, IvaskieneT, BiziulevicieneG. Modulated mesenchymal stromal cells improve skin wound healing[J]. Biologicals, 2020,67:1-8. DOI: 10.1016/j.biologicals.2020.08.003.
|
[19] |
FalangaV, IwamotoS, ChartierM, et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds[J]. Tissue Eng, 2007, 13(6): 1299-1312. DOI: 10.1089/ten.2006.0278.
|
[20] |
CloverAJ, KumarAH, IsaksonM, et al. Allogeneic mesenchymal stem cells, but not culture modified monocytes, improve burn wound healing[J]. Burns, 2015,41(3):548-557. DOI: 10.1016/j.burns.2014.08.009.
|
[21] |
LuD, ChenB, LiangZ, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial[J]. Diabetes Res Clin Pract, 2011,92(1):26-36. DOI: 10.1016/j.diabres.2010.12.010.
|
[22] |
LatailladeJJ, DoucetC, BeyE, et al. New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy[J]. Regen Med, 2007,2(5):785-794. DOI: 10.2217/17460751.2.5.785.
|
[23] |
WettsteinR, SavicM, PiererG, et al. Progenitor cell therapy for sacral pressure sore: a pilot study with a novel human chronic wound model[J]. Stem Cell Res Ther, 2014,5(1):18. DOI: 10.1186/scrt407.
|
[24] |
SongY, ZhaoHY, LyuZS, et al. Dysfunctional bone marrow mesenchymal stem cells in patients with poor graft function after allogeneic hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2018,24(10):1981-1989. DOI: 10.1016/j.bbmt.2018.06.021.
|
[25] |
LevyO, KuaiR, SirenE, et al. Shattering barriers toward clinically meaningful MSC therapies[J]. Sci Adv, 2020,6(30):eaba6884. DOI: 10.1126/sciadv.aba6884.
|
[26] |
FuX, FangL, LiX, et al. Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury[J]. Wound Repair Regen, 2006,14(3):325-335. DOI: 10.1111/j.1743-6109.2006.00128.x.
|
[27] |
TakahashiK, YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006,126(4):663-676. DOI: 10.1016/j.cell.2006.07.024.
|
[28] |
TanabeK, NakamuraM, NaritaM, et al. Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts[J]. Proc Natl Acad Sci U S A, 2013,110(30):12172-12179. DOI: 10.1073/pnas.1310291110.
|
[29] |
BilousovaG, ChenJ, RoopDR. Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage[J]. J Invest Dermatol, 2011,131(4):857-864. DOI: 10.1038/jid.2010.364.
|
[30] |
ItohM, Umegaki-AraoN, GuoZ, et al. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs)[J]. PLoS One, 2013,8(10):e77673. DOI: 10.1371/journal.pone.0077673.
|
[31] |
MartinPE, O'ShaughnessyEM, WrightCS, et al. The potential of human induced pluripotent stem cells for modelling diabetic wound healing in vitro[J]. Clin Sci (Lond), 2018,132(15):1629-1643. DOI: 10.1042/CS20171483.
|
[32] |
WuR, DuD, BoY, et al. Hsp90α promotes the migration of iPSCs-derived keratinocyte to accelerate deep second-degree burn wound healing in mice[J]. Biochem Biophys Res Commun, 2019,520(1):145-151. DOI: 10.1016/j.bbrc.2019.09.120.
|
[33] |
YanY, JiangJ, ZhangM, et al. Effect of iPSCs-derived keratinocytes on healing of full-thickness skin wounds in mice[J]. Exp Cell Res, 2019,385(1):111627. DOI: 10.1016/j.yexcr.2019.111627.
|
[34] |
ShenYI, ChoH, PapaAE, et al. Engineered human vascularized constructs accelerate diabetic wound healing[J]. Biomaterials, 2016,102:107-119. DOI: 10.1016/j.biomaterials.2016.06.009.
|
[35] |
AguiarC, TherrienJ, LemireP, et al. Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage[J]. Equine Vet J, 2016,48(3):338-345. DOI: 10.1111/evj.12438.
|
[36] |
TapiaN, SchölerHR. Molecular obstacles to clinical translation of iPSCs[J]. Cell Stem Cell, 2016,19(3):298-309. DOI: 10.1016/j.stem.2016.06.017.
|
[37] |
Álvaro-AfonsoFJ, Sanz-CorbalánI, Lázaro-MartínezJL, et al. Adipose-derived mesenchymal stem cells in the treatment of diabetic foot ulcers: a review of preclinical and clinical studies[J]. Angiology, 2020,71(9):853-863. DOI: 10.1177/0003319720939467.
|
[38] |
SurowieckaA, StrużynaJ. Adipose-derived stem cells for facial rejuvenation[J]. J Pers Med, 2022,12(1):117. DOI: 10.3390/jpm12010117.
|
[39] |
Abou EittaRS, IsmailAA, AbdelmaksoudRA, et al. Evaluation of autologous adipose-derived stem cells vs. fractional carbon dioxide laser in the treatment of post acne scars: a split-face study[J]. Int J Dermatol, 2019, 58(10): 1212-1222. DOI: 10.1111/ijd.14567.
|
[40] |
IacomiDM, RoscaAM, TutuianuR, et al. Generation of an immortalized human adipose-derived mesenchymal stromal cell line suitable for wound healing therapy[J]. Int J Mol Sci, 2022,23 (16):8925. DOI: 10.3390/ijms23168925.
|
[41] |
ZhangCP, FuXB. Therapeutic potential of stem cells in skin repair and regeneration[J]. Chin J Traumatol, 2008,11(4):209-221. DOI: 10.1016/s1008-1275(08)60045-0.
|
[42] |
SchrederA, PierardGE, PaquetP, et al. Facing towards epidermal stem cells (Review)[J]. Int J Mol Med, 2010,26(2):171-174. DOI: 10.3892/ijmm_00000449.
|
[43] |
CattaneoC, EnzoE, De RosaL, et al. Allele-specific CRISPR-Cas9 editing of dominant epidermolysis bullosa simplex in human epidermal stem cells[J]. Mol Ther, 2024,32(2):372-383. DOI: 10.1016/j.ymthe.2023.11.027.
|
[44] |
YangGN, StrudwickXL, BonderC, et al. Effect of flightless I expression on epidermal stem cell niche during wound repair[J]. Adv Wound Care (New Rochelle), 2020,9(4):161-173. DOI: 10.1089/wound.2018.0884.
|
[45] |
LimatA, MauriD, HunzikerT. Successful treatment of chronic leg ulcers with epidermal equivalents generated from cultured autologous outer root sheath cells[J]. J Invest Dermatol, 1996,107(1):128-135. DOI: 10.1111/1523-1747.ep12298415.
|
[46] |
YangR, WangJ, ZhouZ, et al. Role of caveolin-1 in epidermal stem cells during burn wound healing in rats[J]. Dev Biol, 2019,445(2):271-279. DOI: 10.1016/j.ydbio.2018.11.015.
|
[47] |
BabakhaniA, HashemiP, Mohajer AnsariJ, et al. In vitro differentiation of hair follicle stem cell into keratinocyte by simvastatin[J]. Iran Biomed J, 2019,23(6):404-411. DOI: 10.29252/ibj.23.6.404.
|
[48] |
SamiecM, WiaterJ, WartalskiK, et al. The relative abundances of human leukocyte antigen-E, α-galactosidase a and α-gal antigenic determinants are biased by trichostatin a-dependent epigenetic transformation of triple-transgenic pig-derived dermal fibroblast cells[J]. Int J Mol Sci, 2022,23 (18):10296.DOI: 10.3390/ijms231810296.
|
[49] |
HouP, LiY, ZhangX, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013,341(6146):651-654. DOI: 10.1126/science.1239278.
|
[50] |
GuanJ, WangG, WangJ, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022,605(7909):325-331. DOI: 10.1038/s41586-022-04593-5.
|
[51] |
BurmeisterDM, StoneR, WriceN, et al. Delivery of allogeneic adipose stem cells in polyethylene glycol-fibrin hydrogels as an adjunct to meshed autografts after sharp debridement of deep partial thickness burns[J]. Stem Cells Transl Med, 2018,7(4):360-372. DOI: 10.1002/sctm.17-0160.
|
[52] |
ChenJ, LiuY, ZhangJ, et al. External application of human umbilical cord-derived mesenchymal stem cells in hyaluronic acid gel repairs foot wounds of types I and Ⅱ diabetic rats through paracrine action mode[J]. Stem Cells Transl Med, 2023,12(10):689-706. DOI: 10.1093/stcltm/szad050.
|
[53] |
BaiH, Kyu-CheolN, WangZ, et al. Regulation of inflammatory microenvironment using a self-healing hydrogel loaded with BM-MSCs for advanced wound healing in rat diabetic foot ulcers[J]. J Tissue Eng, 2020,11:2041731420947242. DOI: 10.1177/2041731420947242.
|
[54] |
BelloYM, FalabellaAF, EaglsteinWH. Tissue-engineered skin. Current status in wound healing [J]. Am J Clin Dermatol, 2001, 2(5): 305-313.
|
[55] |
CrawfordL, WyattM, BryersJ, et al. Biocompatibility evolves: phenomenology to toxicology to regeneration[J]. Adv Healthc Mater, 2021,10(11):e2002153. DOI: 10.1002/adhm.202002153.
|
[56] |
ZhangJ, WehrleE, RubertM, et al. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors[J]. Int J Mol Sci, 2021,22(8):3971. DOI: 10.3390/ijms22083971.
|
[57] |
SawyerSW, TakedaK, AlayoubiA, et al. 3D bioprinting optimization of human mesenchymal stromal cell laden gelatin-alginate-collagen bioink[J]. Biomed Mater, 2022,18(1).DOI: 10.1088/1748-605X/aca3e7.
|
[58] |
BaltazarT, JiangB, MoncayoA, et al. 3D bioprinting of an implantable xeno-free vascularized human skin graft[J]. Bioeng Transl Med, 2023,8(1):e10324. DOI: 10.1002/btm2.10324.
|
[59] |
WuY, LiangT, HuY, et al. 3D bioprinting of integral ADSCs-NO hydrogel scaffolds to promote severe burn wound healing[J]. Regen Biomater, 2021,8(3):rbab014. DOI: 10.1093/rb/rbab014.
|
[60] |
HaoL, TaoX, FengM, et al. Stepwise multi-cross-linking bioink for 3D embedded bioprinting to promote full-thickness wound healing[J]. ACS Appl Mater Interfaces, 2023,15(20):24034-24046. DOI: 10.1021/acsami.3c00688.
|
[61] |
FerroniL, D'AmoraU, GardinC, et al. Stem cell-derived small extracellular vesicles embedded into methacrylated hyaluronic acid wound dressings accelerate wound repair in a pressure model of diabetic ulcer[J]. J Nanobiotechnology, 2023,21(1):469. DOI: 10.1186/s12951-023-02202-9.
|
[62] |
LiM, SunL, LiuZ, et al. 3D bioprinting of heterogeneous tissue-engineered skin containing human dermal fibroblasts and keratinocytes[J]. Biomater Sci, 2023,11(7):2461-2477. DOI: 10.1039/d2bm02092k.
|
[63] |
FuH, ZhangD, ZengJ, et al. Application of 3D-printed tissue-engineered skin substitute using innovative biomaterial loaded with human adipose-derived stem cells in wound healing[J]. Int J Bioprint, 2023,9(2):674. DOI: 10.18063/ijb.v9i2.674.
|
[64] |
XueK, JiangY, ZhangX, et al. Hypoxic ADSCs-derived EVs promote the proliferation and chondrogenic differentiation of cartilage stem/progenitor cells[J]. Adipocyte, 2021,10(1):322-337. DOI: 10.1080/21623945.2021.1945210.
|
[65] |
ZhangJ, ZhangJ, JiangX, et al. ASCs-EVs inhibit apoptosis and promote myocardial function in the infarcted heart via miR-221[J]. Discov Med, 2023,35(179):1077-1085. DOI: 10.24976/Discov.Med.202335179.104.
|
[66] |
JinJ, ShiY, GongJ, et al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte[J]. Stem Cell Res Ther, 2019,10(1):95. DOI: 10.1186/s13287-019-1177-1.
|
[67] |
DrommelschmidtK, SerdarM, BendixI, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury[J]. Brain Behav Immun, 2017,60:220-232. DOI: 10.1016/j.bbi.2016.11.011.
|
[68] |
PatelNJ, AshrafA, ChungEJ. Extracellular vesicles as regulators of the extracellular matrix[J]. Bioengineering (Basel), 2023,10(2):136.DOI: 10.3390/bioengineering10020136.
|
[69] |
WolfM, PoupardinRW, Ebner-PekingP, et al. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation[J]. J Extracell Vesicles, 2022,11(4):e12207. DOI: 10.1002/jev2.12207.
|
[70] |
ZhangW, WangT, XueY, et al. Research progress of extracellular vesicles and exosomes derived from mesenchymal stem cells in the treatment of oxidative stress-related diseases[J]. Front Immunol, 2023,14:1238789. DOI: 10.3389/fimmu.2023.1238789.
|
[71] |
ShiR, JinY, ZhaoS, et al. Hypoxic ADSC-derived exosomes enhance wound healing in diabetic mice via delivery of circ-Snhg11 and induction of M2-like macrophage polarization[J]. Biomed Pharmacother, 2022,153:113463. DOI: 10.1016/j.biopha.2022.113463.
|
[72] |
曹涛, 郝彤, 肖丹, 等. 人脂肪干细胞外泌体对糖尿病周围神经病变的作用及其机制[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 240-248. DOI: 10.3760/cma.j.cn501225-20231207-00230.
|
[73] |
XiangQ, XiaoJ, ZhangH, et al. Preparation and characterisation of bFGF-encapsulated liposomes and evaluation of wound-healing activities in the rat[J]. Burns, 2011,37(5):886-895. DOI: 10.1016/j.burns.2011.01.018.
|
[74] |
WangC, WangM, XuT, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration[J]. Theranostics, 2019,9(1):65-76. DOI: 10.7150/thno.29766.
|
[75] |
何佳, 王婧薷, 甘文军, 等. 单细胞RNA测序解析普通小鼠和糖尿病小鼠全层皮肤缺损创面中CD34
+细胞的类型与功能[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 230-239. DOI: 10.3760/cma.j.cn501225-20231130-00217.
|