留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细胞治疗与创面修复

刘琰 刘欣盈

王鹏, 王光毅, 纪世召, 等. 碳点在创面治疗中的应用研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(7): 697-704. DOI: 10.3760/cma.j.cn501120-20210709-00242.
引用本文: 刘琰, 刘欣盈. 细胞治疗与创面修复[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 221-229. DOI: 10.3760/cma.j.cn501225-20240108-00009.
Wang P,Wang GY,Ji SZ,et al.Research advances on the application of carbon dots in wound treatment[J].Chin J Burns Wounds,2022,38(7):697-704.DOI: 10.3760/cma.j.cn501120-20210709-00242.
Citation: Liu Y,Liu HY.Cell therapy and wound repair[J].Chin J Burns Wounds,2024,40(3):221-229.DOI: 10.3760/cma.j.cn501225-20240108-00009.

细胞治疗与创面修复

doi: 10.3760/cma.j.cn501225-20240108-00009
基金项目: 

国家自然科学基金面上项目 82072173, 82172199, 82272262

上海市生物医药领域定向项目 22DX1900600

上海市重中之重研究中心项目 2023ZZ02013

上海市临床重点专科项目 shslczdzk02302

详细信息
    通讯作者:

    刘琰,Email:rjliuyan@126.com

Cell therapy and wound repair

Funds: 

General Program of National Natural Science Foundation of China 82072173, 82172199, 82272262

Shanghai Directed Projects of Biopharmaceutical Field 22DX1900600

Shanghai Research Center for Burn and Wound Repair 2023ZZ02013

Shanghai Municipal Key Clinical Specialty of China shslczdzk02302

More Information
  • 摘要: 细胞治疗包括以活细胞为基础的治疗手段和以细胞外囊泡及生物活性分子为主的细胞衍生物治疗方法。细胞治疗作为近年研究热点,是解决难愈创面修复这一临床难题的潜在可行策略。材料科学和细胞生物学的快速发展拉开了细胞治疗的新序幕,同时也提出了如何进一步优化细胞治疗并将其应用于创面修复的新命题。该文回顾了用于创面治疗的细胞类型,汇总了基于细胞治疗新技术的应用和探索,梳理了现有细胞治疗临床应用的困境,并展望了创面修复中细胞治疗的发展趋势,以期促进创新性细胞治疗体系的发展,进一步提高创面临床治疗效果。

     

  • 慢性、感染性创面愈合一直是临床及科研方面引人关注的问题,其中细菌感染及氧化损伤是阻碍创面愈合的关键因素1。近年来,一类抗菌、生物相容性好的新型材料碳点在感染创面治疗方面的作用备受关注。碳点于2004年被首次报道,是碳材料家族中相对较新的成员,广义上是指尺寸<20 nm的具有荧光性质的碳颗粒2。碳点主要包括石墨烯量子点、碳纳米点、碳量子点,其化学结构为sp2和sp3轨道杂化的碳结构,通常是球状结构,可以分为晶格明显的碳点和无晶格的碳点3。近年来研究者针对碳点结构的多样性,进行了一系列杂原子掺杂、表面功能化修饰,使其获得了较好的抗菌、抗氧化、光致发光特性,同时无论动物实验还是体外细胞实验,都证明了碳点有良好的生物相容性,将其用于治疗动物创面,取得了良好的效果4。本文从碳点抗菌、抗氧化、监测创面感染状态3个方面,对碳点在创面治疗中的研究进展进行了综述,并进一步探讨了其具体的作用机制、潜在研究方向及应用前景,为碳点这种新型材料的基础及临床研究提供思路。

    目前报道的碳点抗菌机制主要有光动力作用、类过氧化物酶作用、机械/物理破坏作用、抑制细菌代谢作用等。

    研究者以氧化石墨烯、壳聚糖为原料,通过水热法制备了一种壳聚糖功能化的石墨烯量子点,其可以通过光动力作用杀灭大肠埃希菌、金黄色葡萄球菌,带正电荷的壳聚糖功能化的石墨烯量子点可通过静电作用捕获细菌,短期暴露在波长450 nm的可见光下会发生光化学转化,迅速产生活性氧和热量,对细菌外膜和内膜造成不可逆转的破坏,导致细胞质渗漏、细菌死亡;实验证明该石墨烯量子点具有良好的在体生物安全性和较低的体外细胞毒性,可促进大鼠感染创面愈合5。研究者采用柠檬酸、1,5-二氨基萘为原料,通过热解法制备碳量子点,其在可见光的激发下也可以产生活性氧,对大肠埃希菌和金黄色葡萄球菌均表现出良好的抗菌活性6。研究者以石墨为原料,通过溶剂热法制备了具有类过氧化物酶作用的石墨烯量子点,将该石墨烯量子点与低浓度过氧化氢结合,形成一种抗菌体系,结果显示石墨烯量子点可以催化过氧化氢,分解生成具有较高抗菌活性的羟自由基,从而避免高浓度过氧化氢直接损伤组织,该体系对大肠埃希菌、金黄色葡萄球菌均表现出良好的抗菌活性,同时可有效促进大鼠感染创面愈合7。研究者以柠檬酸、甲酰胺为原料,通过热解法制备碳纳米点,将该碳纳米点与铂纳米粒子组合,设计出一种高效的具有底物特异性的类过氧化物酶,这种类过氧化物酶可催化过氧化氢产生具有抗菌活性的羟自由基,对大肠埃希菌、金黄色葡萄球菌有良好的杀灭作用,生物相容性好,对正常细胞无毒,且在体外溶血实验中显示出低溶血率,小鼠实验显示,这种类过氧化物酶可以催化小鼠酸性感染组织中的内源性过氧化氢,产生羟自由基,进而清除小鼠创面中耐甲氧西林金黄色葡萄球菌形成的生物膜,促进创面愈合8

    细菌细胞壁或外膜负责维持细菌细胞形状,抵抗机械应力,调节渗透性。碳量子点造成细菌细胞壁或外膜物理/机械损伤,使细菌最终因细胞破裂而死亡。研究者以柠檬酸铵为原料,通过热解法合成无光毒性且不产生活性氧的亚精胺功能化的荧光碳量子点,该荧光碳量子点通过损伤细菌细胞膜,对大肠埃希菌、金黄色葡萄球菌、枯草芽孢杆菌和铜绿假单胞菌均表现出良好的抗菌活性,同时具有良好的生物相容性,可有效促进大鼠感染创面修复9。该研究团队通过更换原料、改进制备流程,以三盐酸亚精胺为原料,通过热解法制备了新型碳量子点,该碳量子点抗菌谱、MIC与亚精胺功能化的荧光碳量子点相似;体外细胞毒性、溶血、血凝、遗传毒性和氧化应激以及体内兔角膜形态和生理变化评价显示,该碳量子点具有良好的生物相容性,此外其可以有效治疗金黄色葡萄球菌导致的兔角膜深部感染。研究表明,该碳量子点表面的高正电荷对细菌细胞膜有很强的破坏作用,同时可暂时诱导角膜上皮细胞紧密连接的开放,从而对兔角膜炎有较强的抗菌治疗作用10。研究者以双季铵盐为原料,通过热解法制备的氮掺杂碳量子点能破坏金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌的细胞结构,但对大肠埃希菌无杀灭作用;研究显示该氮掺杂碳量子点抗菌机制可能是带正电荷的氮掺杂碳量子点与带负电荷的细菌结合后,锚定在细菌表面的某些特定位点上,破坏细菌细胞膜进行杀菌;小鼠感染创面实验显示,在治疗耐甲氧西林金黄色葡萄球菌感染的创面时,该氮掺杂碳量子点的疗效与万古霉素相同11

    一些功能化碳点可以通过抑制细菌代谢,从而杀死细菌。研究者采用柠檬酸、D-谷氨酸为原料,通过热解法制备了D-谷氨酸功能化石墨烯量子点,该石墨烯量子点穿透细菌细胞膜后和MurD连接酶结合,抑制MurD连接酶催化肽聚糖合成,导致细菌细胞壁破坏、细胞质渗漏,最终导致细菌死亡,从而达到长效抗菌效果,其对大肠埃希菌、金黄色葡萄球菌均表现出良好的抗菌活性12。研究者以二甲基二烯丙基、氯化铵为原料,通过热解法合成了季铵盐化碳量子点,该碳量子点对大肠埃希菌、金黄色葡萄球菌均表现出良好的抗菌活性,体外细胞实验和动物实验均显示其具有良好的生物相容性,同时研究证明该碳量子点主要通过作用于革兰阳性菌的核糖体蛋白、革兰阴性菌的代谢相关蛋白,起杀菌作用,在混合细菌急性感染创面的大鼠中,创面愈合过程和创面渗出物在不同时间的细菌培养结果都显示,该碳量子点具有明显的抗感染作用,其效果与局部外用一定浓度的左氧氟沙星效果相同,同时该碳量子点可以明显降低大鼠的病死率,HE染色显示碳量子点干预14 d后,大鼠创面组织中的中性粒细胞基本消失,并形成明显结缔组织,而无碳量子点干预的大鼠创面的组织中仍有大量中性粒细胞,毛细血管扩张,并伴有组织失活13

    目前研究显示碳点清除活性氧的机制主要有2个:(1)具有活性基团,如羟基、醛基、酮基、氨基、羧基、巯基、羰基、多不饱和键,其大多数可以作为质子供体,与活性氧反应后,将自由电子传递给构成C-C主链的碳点主体结构,随后,碳点可以通过释放酸性残基如碳酸盐和碳酸氢盐进一步自我降解14;(2)掺杂硒原子、铈原子,通过硒原子、铈原子的抗氧化性,起到清除活性氧的作用。

    研究者以枣蜜为原料合成了碳纳米点,首次报道了碳纳米点可以通过其具有的羟基、醛基和酮基等活性基团清除活性氧14。研究者以洋葱皮粉为原料通过微波法制备了碳纳米点,以叶黄素为原料通过水热法制备了碳纳米点,这2种碳纳米点均具有良好的水溶性和生物相容性,可被内吞进入细胞内,通过碳纳米点丰富的活性基团,如羟基和氨基,有效去除细胞内活性氧;以叶黄素为原料的碳量子点还富含不饱和双键,这也是其具有超强还原性的原因15, 16。研究者以大蒜为原料通过水热法制备了碳量子点,以黑大豆为原料通过热解法制备了碳量子点,这2种碳量子点均通过其具有的羧基、氨基和羟基等活性基团,表现出良好的活性氧清除活性17, 18。研究者以葡萄糖、1,2-乙二胺和浓硝酸为原料,通过热解法合成了具有氨基、羟基、羰基的碳纳米点,证明该碳纳米点对活性氧的有效抑制浓度明显低于抗坏血酸,并且对超氧阴离子自由基有较强的清除作用19。研究者以青辣椒提取液为原料,通过微波法合成了具有羟基、羰基及不饱和叁键的碳量子点,该碳量子点可以清除活性氧,同时也可能通过激活低氧诱导因子1来促进血管生成,并观察到其可以通过改变大鼠创面肉芽组织的分布和微血管的形成,从而促进大鼠创面愈合20。研究者以间苯二胺为原料,通过热解法制备了具有羟基、不饱和双键的碳纳米点,该碳纳米点拥有抗氧化性能,能够有效地保护体外各种氧化应激下的细胞21

    研究者以柠檬酸、巯基乙胺、亚硒酸钠为原料,通过水热法制备了具有良好活性氧清除能力、生物相容性的具有巯基、同时掺杂硒原子的碳量子点,该碳量子点能穿透细胞膜,分布在细胞质中,可以提高活性氧清除效率,研究者认为该碳量子点对活性氧的清除作用可能是巯基和硒原子相互作用的结果22。研究者以柠檬酸、亚硒酸钠为原料,通过热解法制备了硒掺杂碳量子点,该碳量子点同样具有良好的抗氧化作用及生物相容性,可以保护大鼠星形胶质细胞和大鼠PC12细胞,免遭过氧化氢诱导的氧化损伤23。研究者以硝酸铈六水合物、柠檬酸为原料,通过水热法制备了铈掺杂碳量子点,其具有良好的水溶性、生物相容性,同时该碳量子点拥有丰富的铈离子,且三价铈离子明显多余四价铈离子,三价铈离子与活性氧作用后,转化成四价铈离子,从而起到清除羟活性氧的作用24

    创面愈合过程复杂,很多生物化学反应和环境因素参与其中,pH值是反映创面愈合状态的重要指标。健康皮肤是微酸性的,感染后创面微环境pH值会偏碱性,为7~925, 26,早期识别感染有助于及时治疗。研究证实碳点光致发光作用的机制,是碳点表面氨基或羧基的质子化或去质子化27,可用于构建pH值检测系统。

    研究者采用电解石墨棒制备石墨烯量子点,并采用紫外光照射后,该石墨烯量子点可根据创面pH值的改变显示出特定的颜色28。研究者以1,2,4-三氨基苯和氢氧化钠为原料,通过水热法合成了发橙色光的碳点,然后将这些碳点结合到纸上构建传感平台,传感平台在自然光照射下对pH值变化表现出良好的响应效果29。研究者以1,2,4-三氨基苯和尿素水溶液为原料,通过水热法合成了发橙色光的碳量子点,在可见光照射下,该碳量子点对pH值在5~9范围内的响应效果显著,将其与医用棉布通过氢键结合,得到碳量子点涂层织物,此涂层织物不仅具有良好的生物相容性、抗浸出性和良好的可逆性,且不易被血液污染、可以长期储存,从而可通过视觉反应定量测定pH值30。研究者以L-半胱氨酸为原料,通过水热法合成pH值敏感的碳量子点,用海藻酸钠水凝胶固定血红蛋白和pH值敏感的碳量子点,得到生物相容性好的掺杂碳量子点的海藻酸血红蛋白水凝胶,其中碳量子点可监测创面pH值、海藻酸钠水凝胶可触发止血、血红蛋白可引发芬顿反应起到杀菌作用,其可以有效促进金黄色葡萄球菌感染小鼠创面的愈合,并检测创面感染情况31

    碳资源丰富,价格低廉,碳点本质上是良性和无毒的,其应用于医学领域时间尚短,且目前主要集中于基础研究,尚未应用于临床,但在抗菌性、抗氧化性、光致发光性等方面,都显示出无法替代的优势,进一步研究碳点的不同抗菌机制,抗菌效果的优劣,以及碳量子点不同的活性基团及其组合抗氧化性能的差异,是非常有必要的。可以尝试制备同时具有良好抗氧化性、抗菌性、光致发光性的碳点材料,将其与各种创面敷料相结合,应用于各类急慢性创面,如糖尿病性创面、骨髓炎创面、烧伤创面等的治疗及对创面感染的可视化监测;也可将碳量子点与植入物材料,如血管支架、人工假体等相结合,增加其应用范畴;甚至可以将碳点制成可以全身应用的药物,应用于感染性疾病、严重创伤等的治疗。

    所有作者均声明不存在利益冲突
  • 参考文献(75)

    [1] RheinwaldJG, GreenH. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells[J]. Cell, 1975,6(3):331-343. DOI: 10.1016/s0092-8674(75)80001-8.
    [2] GreenH, KehindeO, ThomasJ. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting[J]. Proc Natl Acad Sci U S A, 1979,76(11):5665-5668. DOI: 10.1073/pnas.76.11.5665.
    [3] Grafting of burns with cultured epithelium prepared from autologous epidermal cells[J]. Lancet, 1981,1(8211):75-78.
    [4] AtiyehBS, CostagliolaM. Cultured epithelial autograft (CEA) in burn treatment: three decades later[J]. Burns, 2007,33(4):405-413. DOI: 10.1016/j.burns.2006.11.002.
    [5] AllouniA, PapiniR, LewisD. Spray-on-skin cells in burns: a common practice with no agreed protocol[J]. Burns, 2013,39(7):1391-1394. DOI: 10.1016/j.burns.2013.03.017.
    [6] Cooper-JonesB, VisintiniS. A noncultured autologous skin cell spray graft for the treatment of burns [M]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health, 2016:1-11.
    [7] HenryS, MapulaS, GreviousM, et al. Maximizing wound coverage in full-thickness skin defects: a randomized-controlled trial of autologous skin cell suspension and widely meshed autograft versus standard autografting[J]. J Trauma Acute Care Surg, 2024,96(1):85-93. DOI: 10.1097/TA.0000000000004120.
    [8] LoCH, ChongE, AkbarzadehS, et al. A systematic review: current trends and take rates of cultured epithelial autografts in the treatment of patients with burn injuries[J]. Wound Repair Regen, 2019,27(6):693-701. DOI: 10.1111/wrr.12748.
    [9] Ortega-ZilicN, HunzikerT, LäuchliS, et al. EpiDex ® Swiss field trial 2004-2008[J]. Dermatology, 2010,221(4):365-372. DOI: 10.1159/000321333.
    [10] CoulombB, FriteauL, BaruchJ, et al. Advantage of the presence of living dermal fibroblasts within in vitro reconstructed skin for grafting in humans[J]. Plast Reconstr Surg, 1998,101(7):1891-1903. DOI: 10.1097/00006534-199806000-00018.
    [11] ShamsF, RahimpourA, VahidnezhadH, et al. The utility of dermal fibroblasts in treatment of skin disorders: a paradigm of recessive dystrophic epidermolysis bullosa[J]. Dermatol Ther, 2021,34(4):e15028. DOI: 10.1111/dth.15028.
    [12] LammeEN, Van LeeuwenRT, BrandsmaK, et al. Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation[J]. J Pathol, 2000,190(5):595-603. DOI: 10.1002/(SICI)1096-9896(200004)190:5<595::AID-PATH572>3.0.CO;2-V.
    [13] SteiglitzBM, MaherRJ, GratzKR, et al. The viable bioengineered allogeneic cellularized construct StrataGraft ® synthesizes, deposits, and organizes human extracellular matrix proteins into tissue type-specific structures and secretes soluble factors associated with wound healing[J]. Burns, 2024,50(2):424-432. DOI: 10.1016/j.burns.2023.06.001.
    [14] CaiS, PanY, HanB, et al. Transplantation of human bone marrow-derived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands[J]. Chin Med J (Engl), 2011,124(15):2260-2268.
    [15] Castro-ManrrezaME, MontesinosJJ. Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications[J]. J Immunol Res, 2015,2015:394917. DOI: 10.1155/2015/394917.
    [16] BronckaersA, HilkensP, MartensW, et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis[J]. Pharmacol Ther, 2014,143(2):181-196. DOI: 10.1016/j.pharmthera.2014.02.013.
    [17] Guillamat-PratsR. The role of MSC in wound healing, scarring and regeneration[J]. Cells, 2021, 10(7):1729. DOI: 10.3390/cells10071729.
    [18] LiubaviciuteA, IvaskieneT, BiziulevicieneG. Modulated mesenchymal stromal cells improve skin wound healing[J]. Biologicals, 2020,67:1-8. DOI: 10.1016/j.biologicals.2020.08.003.
    [19] FalangaV, IwamotoS, ChartierM, et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds[J]. Tissue Eng, 2007, 13(6): 1299-1312. DOI: 10.1089/ten.2006.0278.
    [20] CloverAJ, KumarAH, IsaksonM, et al. Allogeneic mesenchymal stem cells, but not culture modified monocytes, improve burn wound healing[J]. Burns, 2015,41(3):548-557. DOI: 10.1016/j.burns.2014.08.009.
    [21] LuD, ChenB, LiangZ, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial[J]. Diabetes Res Clin Pract, 2011,92(1):26-36. DOI: 10.1016/j.diabres.2010.12.010.
    [22] LatailladeJJ, DoucetC, BeyE, et al. New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy[J]. Regen Med, 2007,2(5):785-794. DOI: 10.2217/17460751.2.5.785.
    [23] WettsteinR, SavicM, PiererG, et al. Progenitor cell therapy for sacral pressure sore: a pilot study with a novel human chronic wound model[J]. Stem Cell Res Ther, 2014,5(1):18. DOI: 10.1186/scrt407.
    [24] SongY, ZhaoHY, LyuZS, et al. Dysfunctional bone marrow mesenchymal stem cells in patients with poor graft function after allogeneic hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2018,24(10):1981-1989. DOI: 10.1016/j.bbmt.2018.06.021.
    [25] LevyO, KuaiR, SirenE, et al. Shattering barriers toward clinically meaningful MSC therapies[J]. Sci Adv, 2020,6(30):eaba6884. DOI: 10.1126/sciadv.aba6884.
    [26] FuX, FangL, LiX, et al. Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury[J]. Wound Repair Regen, 2006,14(3):325-335. DOI: 10.1111/j.1743-6109.2006.00128.x.
    [27] TakahashiK, YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006,126(4):663-676. DOI: 10.1016/j.cell.2006.07.024.
    [28] TanabeK, NakamuraM, NaritaM, et al. Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts[J]. Proc Natl Acad Sci U S A, 2013,110(30):12172-12179. DOI: 10.1073/pnas.1310291110.
    [29] BilousovaG, ChenJ, RoopDR. Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage[J]. J Invest Dermatol, 2011,131(4):857-864. DOI: 10.1038/jid.2010.364.
    [30] ItohM, Umegaki-AraoN, GuoZ, et al. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs)[J]. PLoS One, 2013,8(10):e77673. DOI: 10.1371/journal.pone.0077673.
    [31] MartinPE, O'ShaughnessyEM, WrightCS, et al. The potential of human induced pluripotent stem cells for modelling diabetic wound healing in vitro[J]. Clin Sci (Lond), 2018,132(15):1629-1643. DOI: 10.1042/CS20171483.
    [32] WuR, DuD, BoY, et al. Hsp90α promotes the migration of iPSCs-derived keratinocyte to accelerate deep second-degree burn wound healing in mice[J]. Biochem Biophys Res Commun, 2019,520(1):145-151. DOI: 10.1016/j.bbrc.2019.09.120.
    [33] YanY, JiangJ, ZhangM, et al. Effect of iPSCs-derived keratinocytes on healing of full-thickness skin wounds in mice[J]. Exp Cell Res, 2019,385(1):111627. DOI: 10.1016/j.yexcr.2019.111627.
    [34] ShenYI, ChoH, PapaAE, et al. Engineered human vascularized constructs accelerate diabetic wound healing[J]. Biomaterials, 2016,102:107-119. DOI: 10.1016/j.biomaterials.2016.06.009.
    [35] AguiarC, TherrienJ, LemireP, et al. Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage[J]. Equine Vet J, 2016,48(3):338-345. DOI: 10.1111/evj.12438.
    [36] TapiaN, SchölerHR. Molecular obstacles to clinical translation of iPSCs[J]. Cell Stem Cell, 2016,19(3):298-309. DOI: 10.1016/j.stem.2016.06.017.
    [37] Álvaro-AfonsoFJ, Sanz-CorbalánI, Lázaro-MartínezJL, et al. Adipose-derived mesenchymal stem cells in the treatment of diabetic foot ulcers: a review of preclinical and clinical studies[J]. Angiology, 2020,71(9):853-863. DOI: 10.1177/0003319720939467.
    [38] SurowieckaA, StrużynaJ. Adipose-derived stem cells for facial rejuvenation[J]. J Pers Med, 2022,12(1):117. DOI: 10.3390/jpm12010117.
    [39] Abou EittaRS, IsmailAA, AbdelmaksoudRA, et al. Evaluation of autologous adipose-derived stem cells vs. fractional carbon dioxide laser in the treatment of post acne scars: a split-face study[J]. Int J Dermatol, 2019, 58(10): 1212-1222. DOI: 10.1111/ijd.14567.
    [40] IacomiDM, RoscaAM, TutuianuR, et al. Generation of an immortalized human adipose-derived mesenchymal stromal cell line suitable for wound healing therapy[J]. Int J Mol Sci, 2022,23 (16):8925. DOI: 10.3390/ijms23168925.
    [41] ZhangCP, FuXB. Therapeutic potential of stem cells in skin repair and regeneration[J]. Chin J Traumatol, 2008,11(4):209-221. DOI: 10.1016/s1008-1275(08)60045-0.
    [42] SchrederA, PierardGE, PaquetP, et al. Facing towards epidermal stem cells (Review)[J]. Int J Mol Med, 2010,26(2):171-174. DOI: 10.3892/ijmm_00000449.
    [43] CattaneoC, EnzoE, De RosaL, et al. Allele-specific CRISPR-Cas9 editing of dominant epidermolysis bullosa simplex in human epidermal stem cells[J]. Mol Ther, 2024,32(2):372-383. DOI: 10.1016/j.ymthe.2023.11.027.
    [44] YangGN, StrudwickXL, BonderC, et al. Effect of flightless I expression on epidermal stem cell niche during wound repair[J]. Adv Wound Care (New Rochelle), 2020,9(4):161-173. DOI: 10.1089/wound.2018.0884.
    [45] LimatA, MauriD, HunzikerT. Successful treatment of chronic leg ulcers with epidermal equivalents generated from cultured autologous outer root sheath cells[J]. J Invest Dermatol, 1996,107(1):128-135. DOI: 10.1111/1523-1747.ep12298415.
    [46] YangR, WangJ, ZhouZ, et al. Role of caveolin-1 in epidermal stem cells during burn wound healing in rats[J]. Dev Biol, 2019,445(2):271-279. DOI: 10.1016/j.ydbio.2018.11.015.
    [47] BabakhaniA, HashemiP, Mohajer AnsariJ, et al. In vitro differentiation of hair follicle stem cell into keratinocyte by simvastatin[J]. Iran Biomed J, 2019,23(6):404-411. DOI: 10.29252/ibj.23.6.404.
    [48] SamiecM, WiaterJ, WartalskiK, et al. The relative abundances of human leukocyte antigen-E, α-galactosidase a and α-gal antigenic determinants are biased by trichostatin a-dependent epigenetic transformation of triple-transgenic pig-derived dermal fibroblast cells[J]. Int J Mol Sci, 2022,23 (18):10296.DOI: 10.3390/ijms231810296.
    [49] HouP, LiY, ZhangX, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013,341(6146):651-654. DOI: 10.1126/science.1239278.
    [50] GuanJ, WangG, WangJ, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022,605(7909):325-331. DOI: 10.1038/s41586-022-04593-5.
    [51] BurmeisterDM, StoneR, WriceN, et al. Delivery of allogeneic adipose stem cells in polyethylene glycol-fibrin hydrogels as an adjunct to meshed autografts after sharp debridement of deep partial thickness burns[J]. Stem Cells Transl Med, 2018,7(4):360-372. DOI: 10.1002/sctm.17-0160.
    [52] ChenJ, LiuY, ZhangJ, et al. External application of human umbilical cord-derived mesenchymal stem cells in hyaluronic acid gel repairs foot wounds of types I and Ⅱ diabetic rats through paracrine action mode[J]. Stem Cells Transl Med, 2023,12(10):689-706. DOI: 10.1093/stcltm/szad050.
    [53] BaiH, Kyu-CheolN, WangZ, et al. Regulation of inflammatory microenvironment using a self-healing hydrogel loaded with BM-MSCs for advanced wound healing in rat diabetic foot ulcers[J]. J Tissue Eng, 2020,11:2041731420947242. DOI: 10.1177/2041731420947242.
    [54] BelloYM, FalabellaAF, EaglsteinWH. Tissue-engineered skin. Current status in wound healing [J]. Am J Clin Dermatol, 2001, 2(5): 305-313.
    [55] CrawfordL, WyattM, BryersJ, et al. Biocompatibility evolves: phenomenology to toxicology to regeneration[J]. Adv Healthc Mater, 2021,10(11):e2002153. DOI: 10.1002/adhm.202002153.
    [56] ZhangJ, WehrleE, RubertM, et al. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors[J]. Int J Mol Sci, 2021,22(8):3971. DOI: 10.3390/ijms22083971.
    [57] SawyerSW, TakedaK, AlayoubiA, et al. 3D bioprinting optimization of human mesenchymal stromal cell laden gelatin-alginate-collagen bioink[J]. Biomed Mater, 2022,18(1).DOI: 10.1088/1748-605X/aca3e7.
    [58] BaltazarT, JiangB, MoncayoA, et al. 3D bioprinting of an implantable xeno-free vascularized human skin graft[J]. Bioeng Transl Med, 2023,8(1):e10324. DOI: 10.1002/btm2.10324.
    [59] WuY, LiangT, HuY, et al. 3D bioprinting of integral ADSCs-NO hydrogel scaffolds to promote severe burn wound healing[J]. Regen Biomater, 2021,8(3):rbab014. DOI: 10.1093/rb/rbab014.
    [60] HaoL, TaoX, FengM, et al. Stepwise multi-cross-linking bioink for 3D embedded bioprinting to promote full-thickness wound healing[J]. ACS Appl Mater Interfaces, 2023,15(20):24034-24046. DOI: 10.1021/acsami.3c00688.
    [61] FerroniL, D'AmoraU, GardinC, et al. Stem cell-derived small extracellular vesicles embedded into methacrylated hyaluronic acid wound dressings accelerate wound repair in a pressure model of diabetic ulcer[J]. J Nanobiotechnology, 2023,21(1):469. DOI: 10.1186/s12951-023-02202-9.
    [62] LiM, SunL, LiuZ, et al. 3D bioprinting of heterogeneous tissue-engineered skin containing human dermal fibroblasts and keratinocytes[J]. Biomater Sci, 2023,11(7):2461-2477. DOI: 10.1039/d2bm02092k.
    [63] FuH, ZhangD, ZengJ, et al. Application of 3D-printed tissue-engineered skin substitute using innovative biomaterial loaded with human adipose-derived stem cells in wound healing[J]. Int J Bioprint, 2023,9(2):674. DOI: 10.18063/ijb.v9i2.674.
    [64] XueK, JiangY, ZhangX, et al. Hypoxic ADSCs-derived EVs promote the proliferation and chondrogenic differentiation of cartilage stem/progenitor cells[J]. Adipocyte, 2021,10(1):322-337. DOI: 10.1080/21623945.2021.1945210.
    [65] ZhangJ, ZhangJ, JiangX, et al. ASCs-EVs inhibit apoptosis and promote myocardial function in the infarcted heart via miR-221[J]. Discov Med, 2023,35(179):1077-1085. DOI: 10.24976/Discov.Med.202335179.104.
    [66] JinJ, ShiY, GongJ, et al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte[J]. Stem Cell Res Ther, 2019,10(1):95. DOI: 10.1186/s13287-019-1177-1.
    [67] DrommelschmidtK, SerdarM, BendixI, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury[J]. Brain Behav Immun, 2017,60:220-232. DOI: 10.1016/j.bbi.2016.11.011.
    [68] PatelNJ, AshrafA, ChungEJ. Extracellular vesicles as regulators of the extracellular matrix[J]. Bioengineering (Basel), 2023,10(2):136.DOI: 10.3390/bioengineering10020136.
    [69] WolfM, PoupardinRW, Ebner-PekingP, et al. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation[J]. J Extracell Vesicles, 2022,11(4):e12207. DOI: 10.1002/jev2.12207.
    [70] ZhangW, WangT, XueY, et al. Research progress of extracellular vesicles and exosomes derived from mesenchymal stem cells in the treatment of oxidative stress-related diseases[J]. Front Immunol, 2023,14:1238789. DOI: 10.3389/fimmu.2023.1238789.
    [71] ShiR, JinY, ZhaoS, et al. Hypoxic ADSC-derived exosomes enhance wound healing in diabetic mice via delivery of circ-Snhg11 and induction of M2-like macrophage polarization[J]. Biomed Pharmacother, 2022,153:113463. DOI: 10.1016/j.biopha.2022.113463.
    [72] 曹涛, 郝彤, 肖丹, 等. 人脂肪干细胞外泌体对糖尿病周围神经病变的作用及其机制[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 240-248. DOI: 10.3760/cma.j.cn501225-20231207-00230.
    [73] XiangQ, XiaoJ, ZhangH, et al. Preparation and characterisation of bFGF-encapsulated liposomes and evaluation of wound-healing activities in the rat[J]. Burns, 2011,37(5):886-895. DOI: 10.1016/j.burns.2011.01.018.
    [74] WangC, WangM, XuT, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration[J]. Theranostics, 2019,9(1):65-76. DOI: 10.7150/thno.29766.
    [75] 何佳, 王婧薷, 甘文军, 等. 单细胞RNA测序解析普通小鼠和糖尿病小鼠全层皮肤缺损创面中CD34 +细胞的类型与功能[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 230-239. DOI: 10.3760/cma.j.cn501225-20231130-00217.
  • 加载中
图(1)
计量
  • 文章访问数:  3390
  • HTML全文浏览量:  50
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-08

目录

/

返回文章
返回