Visualized analysis of research hotspots and evolutionary trends in the field of wound repair mechanism research
-
摘要:
目的 探讨创面修复机制研究领域的热点和演化趋势。 方法 该研究为文献计量学研究。检索Web of Science数据库核心合集中建库至2023年12月26日发表的符合入选标准的与创面修复机制研究相关的英文文献,统计年度发文量及其引文量并分析变化趋势。根据前述年度发文量再次检索Web of Science数据库核心合集中该领域发文增长迅速转折年份的前5年至2023年12月31日的相关文献,统计发文总量并计算年度发文增长率,并根据年度发文量趋势线预测2024年该领域发文量。采用CiteSpace 6.2.R4软件对第2次检索文献进行可视化分析,包括来源期刊、引用文献及关键词情况,探讨创面修复机制研究现状和热点的演变过程。 结果 第1次检索共获取3 992篇创面修复机制研究相关文献,其中2015—2023年,年度发文量及其引文量均增加迅速。第2次检索时限设置为2011年1月1日—2023年12月31日,该时段共发文3 206篇,平均年度发文增长率为13.30%,根据该阶段的发文趋势线预测2024年该领域发文量可达500篇。第2次检索文献发表在717种期刊上,发文量排前10位的期刊[占总发文量的18.75%(601/3 206)]的研究方向主要为创伤、分子、中药药理及干细胞,主要出版国家为英国、美国等,影响因子>5的期刊有7本,属于中国科学院分区Q1区或Q2区的期刊有6本。第2次检索文献的引用文献的关键词共形成906个节点及9大聚类(Q=0.64,S=0.82)。第2次检索文献的引用文献在2006—2015年期间的主要聚类为#2基质金属蛋白酶和#3转化生长因子β1,在2016—2023年期间的主要聚类为#1巨噬细胞极化、#4间充质干细胞、#6抗菌、#7植物提取。其中,2021—2023年期间,第2次检索文献的引用文献的聚类#1巨噬细胞极化、#4间充质干细胞、#6抗菌和#7植物提取的共现关系最为密切。对被引值、中介中心值及Sigma值排前5位的第2次检索文献的引用文献的分析显示,巨噬细胞及炎症调控对创面修复的影响、成纤维细胞对创面修复的影响以及生长因子和细胞因子对创面修复的影响是主要研究方向。第2次检索文献的关键词共形成636个节点,7个聚类:#0抗菌、#1间充质干细胞、#2细胞迁移、#3创面修复、#4外泌体、#5负压伤口治疗及#6糖尿病足溃疡(Q=0.59,S=0.80)。第2次检索文献在2016—2023年主要聚集于聚类#0抗菌、#1间充质干细胞和#4外泌体,在2015年前主要聚集于聚类#2细胞迁移和#3创面修复。第2次检索文献的关键词共形成110个突现关键词(以下简称突现词),突现强度排前10位的突现词依次为小鼠、基因表达、皮肤损伤、上皮细胞、信号通路、生物材料、外泌体、分子对接、水凝胶、巨噬细胞极化,其开始年和结束年的时限均不同。其中2021—2023年的高强度突现词为水凝胶(属于聚类#0抗菌)、外泌体(属于聚类#1间充质干细胞)、分子对接(属于聚类#0抗菌)、巨噬细胞极化(属于聚类#0抗菌)。 结论 未来,创面修复机制研究的发展仍会处于稳步阶段;该领域研究热点已经从生长因子及创面修复生理过渡到了抗菌及干细胞方向;该领域的未来研究方向可能为利用分子对接技术和网络药理学筛查促创面修复的药物并研究其深层机制、外泌体对巨噬细胞极化的调控以及水凝胶通过抗菌功效促进创面愈合的机制。 Abstract:Objective To explore the research hotspots and evolutionary trends in the field of wound repair mechanism research. Methods This study was a bibliometric analysis study. English literature related to wound repair mechanism published in the core collection of Web of Science database from the establishment of the database to December 26th, 2023 that met the inclusion criteria were retrieved. The annual number of publications and their citations were counted, and the change trend was analyzed. Based on the aforementioned annual publication volume, the relevant literature in the core collection of Web of Science database in this field from the first 5 years when the publication growth in this field was rapidly turning, to December 31st, 2023 was searched again, and the total number of publications was recorded and annual growth rate of published literature was calculated; and based on the trend line of annual publication volume, the publication volume in this field in 2024 was predicted. The CiteSpace 6.2.R4 software was used for visualized analysis of the literature from the second retrieval, including the source journals, the cited literature, and the keywords, to discuss the current research status and the evolution of hotspots of wound repair mechanism. Results The first search retrieved a total of 3 992 literature related to the research on wound repair mechanisms, among which the annual number of publications and their citations increased rapidly from 2015 to 2023. The time limit for the second retrieval was set to be from January 1st, 2011 to December 31st, 2023, during which a total of 3 206 literature was published, with an average annual growth rate of 13.30%. According to the publication trend line at this stage, it was predicted that the number of publications in this field will reach 500 in 2024. The literature from the second retrieval was published in 717 journals. The research directions of the top 10 journals with the most published literature (accounting for 18.75% (601/3 206) of the total number of publications) mainly focused on trauma, molecules, pharmacology of Chinese medicine, and stem cells, with the United Kingdom and the United States, etc. as the main publishing countries. There were 7 journals with impact factors >5 and 6 journals belonging to the Q1 or Q2 areas of the Chinese Academy of Sciences. There were 906 nodes and 9 large clusters for the keywords of cited literature of literature from the second retrieval (Q=0.64, S=0.82). The main clusters of cited literature of literature from the second retrieval were #2 matrix metalloproteinases and #3 transforming growth factor β1 from 2006 to 2015, #1 macrophage polarization, #4 mesenchymal stem cells, #6 antibacterial, and #7 plant extraction from 2016 to 2023. During 2021-2023, the main clusters of cited literature of literature from the second retrieval being #1 macrophage polarization, #4 mesenchymal stem cells, #6 antibacterial, and #7 plant extraction had the most closely related co-occurrence. The analysis of the top 5 cited literature of literature from the second retrieval with high citation value, high centrality value, and high Sigma value showed that the main research directions were the influence of macrophages and inflammation regulation on wound repair, the influence of fibroblasts on wound repair, and the influence of growth factors and cytokines on wound repair. The keywords of literature from the second retrieval formed 636 nodes and 7 clusters, that being #0 antibacterial, #1 mesenchymal stem cells, #2 cell migration, #3 wound repair, #4 exosomes, #5 negative pressure wound treatment, and #6 diabetic foot ulcer (Q=0.59, S=0.80). For the literature from the second retrieval, the main clusters from 2016 to 2023 were #0 antibacterial, #1 mesenchymal stem cells, and #4 exosomes, and the main clusters before 2015 were #2 cell migration and #3 wound repair. A total of 110 burst keywords (hereinafter referred to as burst words) were formed for the keywords of literature from the second retrieval, and the top 10 burst words in terms of intensity were mouse, gene expression, skin injury, epithelial cells, signaling pathways, biomaterials, exosomes, molecular docking, hydrogels, and macrophage polarization, with different start and end time periods. Among them, the high-intensity burst words from 2021 to 2023 were hydrogel (belonging to cluster #0 antibacterial), exosome (belonging to cluster #1 mesenchymal stem cells), molecular docking (belonging to cluster #0 antibacterial), and macrophage polarization (belonging to cluster #0 antibacterial). Conclusions In the future, the development of wound repair mechanism research will still be at a steady phase. The research hotspots in this field have shifted from growth factors and wound repair physiology to antibacterial and stem cells. Future research directions in this field may include using molecular docking technology and network pharmacology to screen drugs that promote wound repair and study their underlying mechanisms, the regulation of macrophage polarization by exosomes, and the mechanism by which hydrogels promote wound healing through antibacterial effects. -
Key words:
- Bibliometrics /
- Space-time clustering /
- Research hotspot /
- Hotspot evolution /
- Future trends /
- Wound repair /
-
参考文献
(34) [1] BarrientosS, BremH, StojadinovicO, et al. Clinical application of growth factors and cytokines in wound healing[J]. Wound Repair Regen, 2014,22(5):569-578. DOI: 10.1111/wrr.12205. [2] NieC, YangD, XuJ, et al. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis[J]. Cell Transplant, 2011,20(2):205-216. DOI: 10.3727/096368910X520065. [3] WangM, XuX, LeiX, et al. Mesenchymal stem cell-based therapy for burn wound healing[J/OL]. Burns Trauma, 2021,9:tkab002[2024-01-18]. https://pubmed.ncbi.nlm.nih.gov/34212055/. DOI: 10.1093/burnst/tkab002. [4] YangX, MoW, ShiY, et al. Fumaria officinalis-loaded chitosan nanoparticles dispersed in an alginate hydrogel promote diabetic wounds healing by upregulating VEGF, TGF-β, and b-FGF genes: a preclinical investigation[J]. Heliyon, 2023,9(7):e17704. DOI: 10.1016/j.heliyon.2023.e17704. [5] 陈瀚熙, 黄颖雯, 刘汶佶, 等. 国内外电烧伤研究现状与热点的可视化分析[J].中华烧伤与创面修复杂志,2023,39(10):977-984. DOI: 10.3760/cma.j.cn501225-20230511-00167. [6] KulkarniAB, HuhCG, BeckerD, et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death[J]. Proc Natl Acad Sci U S A, 1993, 90(2):770-774. DOI: 10.1073/pnas.90.2.770. [7] LiY, FanJ, ChenM, et al. Transforming growth factor-alpha: a major human serum factor that promotes human keratinocyte migration[J]. J Invest Dermatol, 2006,126(9):2096-2105. DOI: 10.1038/sj.jid.5700350. [8] ClarkDA, CokerR. Transforming growth factor-beta (TGF-beta)[J]. Int J Biochem Cell Biol, 1998,30(3):293-298. DOI: 10.1016/s1357-2725(97)00128-3. [9] AranyPR, FlandersKC, KobayashiT, et al. Smad3 deficiency alters key structural elements of the extracellular matrix and mechanotransduction of wound closure[J]. Proc Natl Acad Sci U S A, 2006,103(24):9250-9255. DOI: 10.1073/pnas.0602473103. [10] SunJ, ZhaoH, ShenC, et al. Tideglusib promotes wound healing in aged skin by activating PI3K/Akt pathway[J]. Stem Cell Res Ther, 2022,13(1):269. DOI: 10.1186/s13287-022-02949-2. [11] CaronC, DeGeerJ, FournierP, et al. CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis[J]. Sci Rep, 2016,6:27485. DOI: 10.1038/srep27485. [12] NishidaT, KondoS, MaedaA, et al. CCN family 2/connective tissue growth factor (CCN2/CTGF) regulates the expression of Vegf through Hif-1alpha expression in a chondrocytic cell line, HCS-2/8, under hypoxic condition[J]. Bone, 2009,44(1):24-31. DOI: 10.1016/j.bone.2008.08.125. [13] WijesooriyaLI, WaidyathilakeD. Antimicrobial properties of nonantibiotic agents for effective treatment of localized wound infections: a minireview[J]. Int J Low Extrem Wounds, 2022,21(3):207-218. DOI: 10.1177/1534734620939748. [14] BangS, JungUW, NohI. Synthesis and biocompatibility characterizations of in situ chondroitin sulfate-gelatin hydrogel for tissue engineering[J]. Tissue Eng Regen Med, 2018,15(1):25-35. DOI: 10.1007/s13770-017-0089-3. [15] MehataAK, SetiaA, Vikas, et al. Vitamin E TPGS-based nanomedicine, nanotheranostics, and targeted drug delivery: past, present, and future[J]. Pharmaceutics, 2023,15(3):722. DOI: 10.3390/pharmaceutics15030722. [16] LiuH, WangC, LiC, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing[J]. RSC Adv, 2018,8(14):7533-7549. DOI: 10.1039/c7ra13510f. [17] WengT, WangJ, YangM, et al. Nanomaterials for the delivery of bioactive factors to enhance angiogenesis of dermal substitutes during wound healing[J/OL]. Burns Trauma, 2022,10:tkab049[2024-01-18].https://pubmed.ncbi.nlm.nih.gov/36960274/. DOI: 10.1093/burnst/tkab049. [18] KolanthaiE, FuY, KumarU, et al. Nanoparticle mediated RNA delivery for wound healing[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2022,14(2):e1741. DOI: 10.1002/wnan.1741. [19] LeeV, RompolasP. Corneal regeneration: insights in epithelial stem cell heterogeneity and dynamics[J]. Curr Opin Genet Dev, 2022,77:101981. DOI: 10.1016/j.gde.2022.101981. [20] ChoiYS, ZhangY, XuM, et al. Distinct functions for Wnt/β-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis[J]. Cell Stem Cell, 2013,13(6):720-733. DOI: 10.1016/j.stem.2013.10.003. [21] ChengP, SunX, YinD, et al. Nanog down-regulates the Wnt signaling pathway via β-catenin phosphorylation during epidermal stem cell proliferation and differentiation[J]. Cell Biosci, 2015,5:5. DOI: 10.1186/2045-3701-5-5. [22] StamosJL, WeisWI. The β-catenin destruction complex[J]. Cold Spring Harb Perspect Biol, 2013,5(1):a007898. DOI: 10.1101/cshperspect.a007898. [23] BisevacJ, KattaK, PetrovskiG, et al. Wnt/β-catenin signaling activation induces differentiation in human limbal epithelial stem cells cultured ex vivo[J]. Biomedicines, 2023,11(7):1829. DOI: 10.3390/biomedicines11071829. [24] JorgeL, GómezAlvarez, PazziniJM, et al. Effects of canine adipose-derived mesenchymal stem cells on the epithelialization of rabbits' skin autograft (Oryctolagus cuniculus)[J].Pesquisa Veterinária Brasileira, 2020, 40(12):1018-1028.DOI: 10.1590/1678-5150-pvb-6543. [25] PitulescuME, SchmidtI, GiaimoBD, et al. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation[J]. Nat Cell Biol, 2017,19(8):915-927. DOI: 10.1038/ncb3555. [26] KhanS, VillalobosMA, ChoronRL, et al. Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells[J]. J Vasc Surg, 2017,65(5):1483-1492. DOI: 10.1016/j.jvs.2016.04.034. [27] YuF, WitmanN, YanD, et al. Human adipose-derived stem cells enriched with VEGF-modified mRNA promote angiogenesis and long-term graft survival in a fat graft transplantation model[J]. Stem Cell Res Ther, 2020,11(1):490. DOI: 10.1186/s13287-020-02008-8. [28] HuayllaniMT, Sarabia-EstradaR, RestrepoDJ, et al. Adipose-derived stem cells in wound healing of full-thickness skin defects: a review of the literature[J]. J Plast Surg Hand Surg, 2020,54(5):263-279. DOI: 10.1080/2000656X.2020.1767116. [29] ZhangW, BaiX, ZhaoB, et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway[J]. Exp Cell Res, 2018,370(2):333-342. DOI: 10.1016/j.yexcr.2018.06.035. [30] XiaJ, MinaminoS, KuwabaraK, et al. Stem cell secretome as a new booster for regenerative medicine[J]. Biosci Trends, 2019,13(4):299-307. DOI: 10.5582/bst.2019.01226. [31] ShangB, XuT, HuN, et al. Circ-Klhl8 overexpression increased the therapeutic effect of EPCs in diabetic wound healing via the miR-212-3p/SIRT5 axis[J]. J Diabetes Complications, 2021,35(11):108020. DOI: 10.1016/j.jdiacomp.2021.108020. [32] WangZ, FengC, LiuH, et al. Hypoxic pretreatment of adipose-derived stem cells accelerates diabetic wound healing via circ-Gcap14 and HIF-1α/VEGF mediated angiopoiesis[J]. Int J Stem Cells, 2021,14(4):447-454. DOI: 10.15283/ijsc21050. [33] LiY, ChengT, WanC, et al. circRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140-3p and inducing TGFA gene expression in retinal pigment epithelial cells[J]. Gene, 2020,747:144653. DOI: 10.1016/j.gene.2020.144653. [34] WangA, TomaMA, MaJ, et al. Circular RNA hsa_circ_0084443 is upregulated in diabetic foot ulcer and modulates keratinocyte migration and proliferation[J]. Adv Wound Care (New Rochelle), 2020,9(4):145-160. DOI: 10.1089/wound.2019.0956. -
4 2011—2023年Web of Science数据库核心合集中创面修复机制研究相关文献的关键词共现聚类分析。4A.关键词共现分析聚类网络图;4B.聚类规模排前5位的关键词共现分析聚类时间线图;4C.上下2条线图分别为2020—2023年聚类#0、#1内高频突现关键词;4D.突现强度排前10位的突现关键词
注:图中各分图的红色均表示高突现强度的关键词;图4A、4B、4C中的节点代表关键词,节点越大代表关键词出现频次越高,节点颜色越接近绿色代表关键词出现时间越接近2023年、越接近棕色代表关键词出现时间越接近2011年,图4A、4B中的聚类序号反映聚类规模,数字越大表示规模越小;图4B中节点位置所对应的时间为该关键词首次出现的时间;图4D中的亮蓝色代表低突现强度关键词、浅蓝色代表关键词未出现
表1 2011—2023年Web of Science数据库核心合集中创面修复机制研究相关文献发文量排前10位的来源期刊情况
表1. The top 10 source journals in terms of the number of publications of literature related to wound repair mechanism research in the core collection of Web of Science database from 2011 to 2023
排序 期刊名称 出版国家 相关文献发文量(篇) 引用分数 中国科学院分区 影响因子 1 《Wound Repair and Regeneration》 美国 105 6.10 Q3 3.7 2 《International Journal of Molecular Sciences》 美国 81 7.80 Q2 6.2 3 《International Journal of Biological Macromolecules》 荷兰 79 14.50 Q1 7.8 4 《International Wound Journal》 英国 64 5.60 Q3 3.7 5 《Journal of Investigative Dermatology》 美国 62 8.90 Q2 7.7 6 《The Journal of Ethnopharmacology》 爱尔兰 56 8.60 Q2 5.3 7 《Journal of Wound Care》 英国 43 3.10 Q4 2.4 8 《Stem Cell Research & Therapy》 英国 38 11.80 Q2 8.0 9 《Advanced Healthcare Materials》 德国 37 15.50 Q2 10.6 10 《Pharmaceutics》 瑞士 36 6.90 Q3 6.0 表2 2011—2023年Web of Science数据库核心合集中被引值、中介中心值及Sigma值排前5位的创面修复机制研究相关文献的引用文献的内容概要
表2. Summary of the top 5 cited literature of literature related to wound repair mechanism research in the core collection of Web of Science database from 2011 to 2023 by citation value, centrality value, and Sigma value
类型 排序 文献DOI 值 内容概要 高被引值引用文献 1 10.1152/physrev.00067.2017 109 通过单细胞测序技术得出,细胞的表型和功能异质性能促进创面修复 2 10.3389/fphys.2018.00419 71 证实了创面修复过程中单核细胞/巨噬细胞极化的过程及目前常用方法 3 10.1159/000454919 59 证实了巨噬细胞在创面修复炎症期起重要作用 4 10.1126/scitranslmed.3009337 59 综述了2014年以前的与创面修复相关的机制及信号通路,并提出多种临床转化观点 5 10.1007/s12325-017-0478-y 56 综述了已知的与创面修复相关的生理学机制 高中介中心值引用文献 1 10.1038/nature12783 0.24 证实了皮肤中2种Fb谱系:一种位于浅层真皮,可转化为立毛肌细胞;另一种位于深层真皮,可转化为前脂肪细胞和脂肪细胞;创面修复起于深层真皮Fb,而浅层真皮Fb仅在毛囊形成及再上皮化过程中发挥作用 2 10.4049/jimmunol.0903356 0.19 证实了巨噬细胞缺乏对创面修复不同时期有不同影响 3 10.1111/wrr.12205 0.10 综述了4种生长因子:GM-CSF、PDGF、VEGF、bFGF和其他细胞因子在创面修复中的作用机制 4 10.2337/db12-1450 0.10 证实了在糖尿病创面微环境中存在IL-1β与M1型巨噬细胞之间的正反馈环路使创面长期处于炎症状态,影响创面愈合 5 10.3727/096368910X520065 0.10 证实了脂肪干细胞可分化为上皮细胞和内皮细胞,分泌VEGF、HGF和FGF2等多种细胞因子,参与血管新生、肉芽组织形成及再上皮化过程,从而促进创面愈合 高Sigma 值引用文献 1 10.4049/jimmunol.0903356 5.33 证实了巨噬细胞缺乏对创面修复不同时期有不同影响 2 10.1177/0022034509359125 4.56 综述了氧化、感染、年龄、性激素、压力、糖尿病、肥胖、药物、酗酒、吸烟和营养等因素对创面修复的影响及其潜在的细胞和/或分子机制 3 10.1038/nature12783 3.81 证实了皮肤中2种Fb谱系:一种位于浅层真皮,可转化为立毛肌细胞;另一种位于深层真皮,可转化为前脂肪细胞和脂肪细胞;创面修复起于深层真皮Fb,而浅层真皮Fb仅在毛囊形成及再上皮化过程中发挥作用 4 10.1111/wrr.12205 2.51 综述了4种生长因子:GM-CSF、PDGF、VEGF、bFGF和其他细胞因子在创面修复中的作用机制 5 10.1159/000454919 2.45 证实了巨噬细胞在创面修复炎症期起重要作用 注:Fb为成纤维细胞,GM-CSF为粒细胞-巨噬细胞集落刺激因子,PDGF为血小板衍生生长因子,VEGF为血管内皮生长因子,bFGF为碱性成纤维细胞生长因子,IL-1β为白细胞介素1β,HGF为肝细胞生长因子,FGF2为成纤维细胞生长因子2