留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双样本双向孟德尔随机化法分析人免疫细胞与增生性瘢痕之间的因果关系

吴虹林 陈咏菲 李舒婷 杨浩 李晓卉 唐冰 朱家源 胡志成

吴虹林, 陈咏菲, 李舒婷, 等. 双样本双向孟德尔随机化法分析人免疫细胞与增生性瘢痕之间的因果关系[J]. 中华烧伤与创面修复杂志, 2024, 40(6): 572-578. DOI: 10.3760/cma.j.cn501225-20240203-00046.
引用本文: 吴虹林, 陈咏菲, 李舒婷, 等. 双样本双向孟德尔随机化法分析人免疫细胞与增生性瘢痕之间的因果关系[J]. 中华烧伤与创面修复杂志, 2024, 40(6): 572-578. DOI: 10.3760/cma.j.cn501225-20240203-00046.
Wu HL,Chen YF,Li ST,et al.Analysis of the causal relationship between human immune cells and hypertrophic scar using two-sample bidirectional Mendelian randomization method[J].Chin J Burns Wounds,2024,40(6):572-578.DOI: 10.3760/cma.j.cn501225-20240203-00046.
Citation: Wu HL,Chen YF,Li ST,et al.Analysis of the causal relationship between human immune cells and hypertrophic scar using two-sample bidirectional Mendelian randomization method[J].Chin J Burns Wounds,2024,40(6):572-578.DOI: 10.3760/cma.j.cn501225-20240203-00046.

双样本双向孟德尔随机化法分析人免疫细胞与增生性瘢痕之间的因果关系

doi: 10.3760/cma.j.cn501225-20240203-00046
基金项目: 

国家自然科学基金面上项目 82172213

详细信息
    通讯作者:

    胡志成,Email:huzhch5@mail.sysu.edu.cn

Analysis of the causal relationship between human immune cells and hypertrophic scar using two-sample bidirectional Mendelian randomization method

Funds: 

General Program of National Natural Science Foundation of China 82172213

More Information
  • 摘要:   目的  运用双样本双向孟德尔随机化法,探讨人免疫细胞与增生性瘢痕(HS)之间的因果关系。  方法  该研究基于双样本双向孟德尔随机化(MR)法,分别从全基因组关联分析catalog数据库和FinnGen数据库获取731种人免疫细胞与HS的数据集。设置显著阈值,筛选与免疫细胞及HS显著相关的单核苷酸多态性(SNP)并排除弱工具变量偏倚的影响。采用逆方差加权(IVW)法[同时采用错误发现率(FDR)中的Benjamini-Hochberg法校正其P值]初步检测免疫细胞与HS的因果关系并筛选与HS有显著因果关系的免疫细胞。进一步地,采用双样本MR分析的5种方法:IVW法、加权中位数法、简单模式法、加权模式法和MR-Egger法绘制散布图检测筛选出的免疫细胞与HS的因果关系。针对符合假设的免疫细胞SNP,进行Cochran Q检验评估异质性,进行MR-Egger回归和MR-PRESSO法排除水平多效性,进行留一法分析来评估显著结果是否由单个SNP决定。采用双样本MR分析中IVW法反向检测HS与免疫细胞之间的因果关系。  结果  731种免疫细胞达到显著阈值的SNP数量从7个到1 786个不等,HS中达到显著阈值的SNP数量有119个,这些SNP的F值均>10,提示具有弱工具变量偏倚的可能性较小。IVW法分析显示,60种免疫细胞与HS具有潜在因果关系(P值均<0.05),经Benjamini-Hochberg法校正后,仅CD45RA和CD39双阳性调节性T细胞(Treg)与HS具有潜在因果关系(PFDR<0.05)。IVW法(比值比为1.16,95%置信区间为1.08~1.24,P<0.05、PFDR<0.05)、加权中位数法(比值比为1.16,95%置信区间为1.05~1.28,P<0.05)、加权模式法(比值比为1.14,95%置信区间为1.02~1.27,P<0.05)和MR-Egger 法(比值比为1.18,95%置信区间为1.07~1.30,P<0.05)的散布图均显示,CD45RA和CD39双阳性Treg的14个SNP与HS患病风险存在因果关系;仅简单模式法的散布图显示,CD45RA和CD39双阳性Treg的14个SNP与HS患病风险的因果关系不明显(P>0.05)。Cochran Q检验显示,CD45RA和CD39双阳性Treg与HS的因果关系不存在异质性(P>0.05)。MR-Egger回归、MR-PRESSO法分析显示,CD45RA和CD39双阳性Treg与HS的显著因果关系不存在水平多效性(P>0.05)。留一法分析显示,CD45RA和CD39双阳性Treg与HS的显著因果关系在逐个剔除SNP后结果稳定。双样本反向MR分析显示,HS与731种免疫细胞均无潜在因果关系(P>0.05)。  结论  从遗传学的角度揭示,免疫细胞CD45RA和CD39双阳性Treg可能会增加HS患病风险。

     

  • 参考文献(29)

    [1] CaiH, LiuX, LiuD, et al. GEO data mining identifies potential immune-related genes in hypertrophic scar and verities in a rabbit model[J]. Heliyon, 2023,9(7):e17266. DOI: 10.1016/j.heliyon.2023.e17266.
    [2] LimandjajaGC, NiessenFB, ScheperRJ, et al. Hypertrophic scars and keloids: overview of the evidence and practical guide for differentiating between these abnormal scars[J]. Exp Dermatol, 2021,30(1):146-161. DOI: 10.1111/exd.14121.
    [3] Ud-DinS, BayatA. Controlling inflammation pre-emptively or at the time of cutaneous injury optimises outcome of skin scarring[J]. Front Immunol, 2022,13:883239. DOI: 10.3389/fimmu.2022.883239.
    [4] ShakerSA, AyuobNN, HajrahNH. Cell talk: a phenomenon observed in the keloid scar by immunohistochemical study[J]. Appl Immunohistochem Mol Morphol, 2011,19(2):153-159. DOI: 10.1097/PAI.0b013e3181efa2ef.
    [5] GauglitzGG, KortingHC, PavicicT, et al. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies[J]. Mol Med, 2011,17(1/2):113-125. DOI: 10.2119/molmed.2009.00153.
    [6] WangZC, ZhaoWY, CaoY, et al. The roles of inflammation in keloid and hypertrophic scars[J]. Front Immunol, 2020,11:603187. DOI: 10.3389/fimmu.2020.603187.
    [7] WongVW, PaternoJ, SorkinM, et al. Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation[J]. FASEB J, 2011,25(12):4498-4510. DOI: 10.1096/fj.10-178087.
    [8] ChenB, LiH, XiaW. Imiquimod regulating Th1 and Th2 cell-related chemokines to inhibit scar hyperplasia[J]. Int Wound J, 2019,16(6):1281-1288. DOI: 10.1111/iwj.13183.
    [9] CarterAR, SandersonE, HammertonG, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation[J]. Eur J Epidemiol, 2021,36(5):465-478. DOI: 10.1007/s10654-021-00757-1.
    [10] 杨亮亮, 邓辰亮, 杨松林. 巨噬细胞在增生性瘢痕形成机制中的研究进展[J].中国美容整形外科杂志,2019,30(3):191-192,后插1. DOI: 10.3969/j.issn.1673-7040.2019.03.021.
    [11] BoothbyIC, CohenJN, RosenblumMD. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair[J]. Sci Immunol, 2020,5(47):eaaz9631.DOI: 10.1126/sciimmunol.aaz9631.
    [12] BirneyE. Mendelian randomization[J]. Cold Spring Harb Perspect Med, 2022,12(4):a041302.DOI: 10.1101/cshperspect.a041302.
    [13] OrrùV, SteriM, SidoreC, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J]. Nat Genet, 2020,52(10):1036-1045. DOI: 10.1038/s41588-020-0684-4.
    [14] SidoreC, BusoneroF, MaschioA, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers[J]. Nat Genet, 2015,47(11):1272-1281. DOI: 10.1038/ng.3368.
    [15] GuJ, YanGM, KongXL, et al. Assessing the causal relationship between immune traits and systemic lupus erythematosus by bi-directional Mendelian randomization analysis[J]. Mol Genet Genomics, 2023,298(6):1493-1503. DOI: 10.1007/s00438-023-02071-9.
    [16] 1000 Genomes Project Consortium, AutonA, BrooksLD, et al. A global reference for human genetic variation[J]. Nature, 2015,526(7571):68-74. DOI: 10.1038/nature15393.
    [17] ShortWD, OlutoyeOO, PadonBW, et al. Advances in non-invasive biosensing measures to monitor wound healing progression[J]. Front Bioeng Biotechnol, 2022,10:952198. DOI: 10.3389/fbioe.2022.952198.
    [18] LiuY, Chinese Burn Association. Chinese expert consensus on the management of pediatric deep partial-thickness burn wounds (2023 edition)[J/OL]. Burns Trauma, 2023,11:tkad053[2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/37936895/. DOI: 10.1093/burnst/tkad053.
    [19] AlBarashdi MA, AliA, McMullinMF, et al. Protein tyrosine phosphatase receptor type C (PTPRC or CD45)[J]. J Clin Pathol,2021,74(9):548-552. DOI: 10.1136/jclinpath-2020-206927.
    [20] HollandDB, JeremyAH, RobertsSG, et al. Inflammation in acne scarring: a comparison of the responses in lesions from patients prone and not prone to scar[J]. Br J Dermatol, 2004,150(1):72-81. DOI: 10.1111/j.1365-2133.2004.05749.x.
    [21] ChenZ, ZhouL, WonT, et al. Characterization of CD45RO+ memory T lymphocytes in keloid disease[J]. Br J Dermatol, 2018,178(4):940-950. DOI: 10.1111/bjd.16173.
    [22] RoweM, HildrethJE, RickinsonAB, et al. Monoclonal antibodies to Epstein-Barr virus-induced, transformation-associated cell surface antigens: binding patterns and effect upon virus-specific T-cell cytotoxicity[J]. Int J Cancer, 1982,29(4):373-381. DOI: 10.1002/ijc.2910290403.
    [23] 樊华, 贺强. CD39与调节性T细胞的研究进展[J/CD].中华临床医师杂志(电子版),2013,7(17):125-126. DOI: 10.3877/cma.j.issn.1674-0785.2013.17.057.
    [24] FerrariD, GambariR, IdzkoM, et al. Purinergic signaling in scarring[J]. FASEB J, 2016,30(1):3-12. DOI: 10.1096/fj.15-274563.
    [25] EltzschigHK, SitkovskyMV, RobsonSC. Purinergic signaling during inflammation[J]. N Engl J Med, 2012,367(24):2322-2333. DOI: 10.1056/NEJMra1205750.
    [26] FernándezP, Perez-AsoM, SmithG, et al. Extracellular generation of adenosine by the ectonucleotidases CD39 and CD73 promotes dermal fibrosis[J]. Am J Pathol, 2013,183(6):1740-1746. DOI: 10.1016/j.ajpath.2013.08.024.
    [27] HuangX, GuS, LiuC, et al. CD39+ fibroblasts enhance myofibroblast activation by promoting IL-11 secretion in hypertrophic scars[J]. J Invest Dermatol, 2022,142(4):1065-1076.e19. DOI: 10.1016/j.jid.2021.07.181.
    [28] ChenY, JinQ, FuX, et al. Connection between T regulatory cell enrichment and collagen deposition in keloid[J]. Exp Cell Res, 2019,383(2):111549. DOI: 10.1016/j.yexcr.2019.111549.
    [29] KnoedlerS, KnoedlerL, Kauke-NavarroM, et al. Regulatory T cells in skin regeneration and wound healing[J]. Mil Med Res, 2023,10(1):49. DOI: 10.1186/s40779-023-00484-6.
  • 1  人免疫细胞与增生性瘢痕的双样本双向孟德尔随机化分析假设图

    注:图中虚线表示2个因子之间不产生作用、实线表示2个因子之间可以产生作用;图中免疫细胞目前已知有731种

    2  逆方差加权法分析人免疫细胞与增生性瘢痕之间的因果关系

    注:FDR指错误发现率;P值为单纯逆方差加权法的所得值,PFDR 值为经Benjamini-Hochberg法校正后的逆方差加权法所得值;红色箭头指CD45RA和CD39双阳性调节性T细胞;每个条柱对应一种免疫细胞

    3  双样本孟德尔随机化法分析人免疫细胞CD45RA和CD39双阳性调节性T细胞的14个 SNP与增生性瘢痕因果关系的散布图

    注:SNP为单核苷酸多态性;直线的斜率表示每种方法的因果关联,斜率为正值表明该免疫细胞可增加增生性瘢痕的发生风险

    4  留一法分析人免疫细胞CD45RA和CD39双阳性调节性T细胞的14个SNP与增生性瘢痕之间的因果关系

    注:SNP为单核苷酸多态性;线段中的圆点为比值比,误差线均在0的右侧,提示结果可靠

  • 加载中
图(5)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  140
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-03

目录

    /

    返回文章
    返回