留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光生物调节在创伤修复和医学美容中的临床应用

姚敏 张逸秋

姚敏, 张逸秋. 光生物调节在创伤修复和医学美容中的临床应用[J]. 中华烧伤与创面修复杂志, 2024, 40(4): 307-313. DOI: 10.3760/cma.j.cn501225-20240203-00048.
引用本文: 姚敏, 张逸秋. 光生物调节在创伤修复和医学美容中的临床应用[J]. 中华烧伤与创面修复杂志, 2024, 40(4): 307-313. DOI: 10.3760/cma.j.cn501225-20240203-00048.
Yao M,Zhang YQ.Clinical application of photobiomodulation in trauma repair and medical aesthetics[J].Chin J Burns Wounds,2024,40(4):307-313.DOI: 10.3760/cma.j.cn501225-20240203-00048.
Citation: Yao M,Zhang YQ.Clinical application of photobiomodulation in trauma repair and medical aesthetics[J].Chin J Burns Wounds,2024,40(4):307-313.DOI: 10.3760/cma.j.cn501225-20240203-00048.

光生物调节在创伤修复和医学美容中的临床应用

doi: 10.3760/cma.j.cn501225-20240203-00048
基金项目: 

国家重点研发计划 2020YFC1512704

上海市科学技术委员会项目 22MC1940300

详细信息
    通讯作者:

    姚敏,Email:my058@vip.sina.com

Clinical application of photobiomodulation in trauma repair and medical aesthetics

Funds: 

National Key Research and Development Program of China 2020YFC1512704

Program of Science and Technology Commission of Shanghai Municipality of China 22MC1940300

More Information
  • 摘要: 近年来,随着对光生物调节作用分子生物学机制研究的深入,光生物调节已被逐步应用于临床,为各类疾病提供了有效的治疗手段和方法。相较于传统的光热治疗,光生物调节具有疗效好、几乎无不良反应、操作简便等特点,且临床疗效日益显著。该文就光生物调节的机制及其在创伤修复、医学美容等领域中的应用特点及发展趋势进行详细阐述,以期为该疗法在临床中的广泛应用提供理论基础。

     

  • 参考文献(52)

    [1] HeiskanenV, HamblinMR. Photobiomodulation: lasers vs. light emitting diodes? [J].Photochem Photobiol Sci, 2018,17(8):1003-1017. DOI: 10.1039/c8pp90049c.2.
    [2] MussttafRA, JenkinsDFL, JhaAN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review[J]. Int J Radiat Biol, 2019,95(2):120-143. DOI: 10.1080/09553002.2019.1524944.
    [3] MesterE,SzendeB,GärtnerP.The effect of laser beams on the growth of hair in mice[J].Radiobiol Radiother (Berl),1968,9(5):621-626.
    [4] MesterE, NagylucskayS, DöklenA, et al. Laser stimulation of wound healing[J]. Acta Chir Acad Sci Hung, 1976,17(1):49-55.
    [5] AndersJJ,LanzafameRJ,AranyPR.Low-level light/laser therapy versus photobiomodulation therapy[J].Photomed Laser Surg,2015,33(4):183-184.DOI: 10.1089/pho.2015.9848.
    [6] ZeinR,SeltingW,HamblinMR.Review of light parameters and photobiomodulation efficacy: dive into complexity[J].J Biomed Opt,2018,23(12):1-17.DOI: 10.1117/1.JBO.23.12.120901.
    [7] SommerAP, PinheiroAL, MesterAR, et al. Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA's light-emitting diode array system[J]. J Clin Laser Med Surg, 2001,19(1):29-33. DOI: 10.1089/104454701750066910.
    [8] DompeC,MoncrieffL,MatysJ,et al.Photobiomodulation-underlying mechanism and clinical applications[J].J Clin Med,2020,9(6):1724. DOI: 10.3390/jcm9061724.
    [9] ZhangF,LiQ,QinW,et al.A study of the biological effects of low-level light[J].Lasers Med Sci,2024,39(1):74.DOI: 10.1007/s10103-024-04018-x.
    [10] LimJ,SandersRA,SnyderAC,et al.Effects of low-level light therapy on streptozotocin-induced diabetic kidney[J].J Photochem Photobiol B,2010,99(2):105-110.DOI: 10.1016/j.jphotobiol.2010.03.002.
    [11] Wong-RileyMT,LiangHL,EellsJT,et al.Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase[J].J Biol Chem,2005,280(6):4761-4771.DOI: 10.1074/jbc.M409650200.
    [12] GlassGE.Photobiomodulation: a review of the molecular evidence for low level light therapy[J].J Plast Reconstr Aesthet Surg,2021,74(5):1050-1060.DOI: 10.1016/j.bjps.2020.12.059.
    [13] BielskutėS,PlavecJ,PodbevšekP.Impact of oxidative lesions on the human telomeric G-quadruplex[J].J Am Chem Soc,2019,141(6):2594-2603.DOI: 10.1021/jacs.8b12748.
    [14] YangL,DongY,WuC,et al.Effects of prenatal photobiomodulation treatment on neonatal hypoxic ischemia in rat offspring[J].Theranostics,2021,11(3):1269-1294.DOI: 10.7150/thno.49672.
    [15] ShenW,TeoKYC,WoodJPM,et al.Preclinical and clinical studies of photobiomodulation therapy for macular oedema[J].Diabetologia,2020,63(9):1900-1915.DOI: 10.1007/s00125-020-05189-2.
    [16] LipkoNB.Photobiomodulation: evolution and adaptation[J].Photobiomodul Photomed Laser Surg,2022,40(4):213-233.DOI: 10.1089/photob.2021.0145.
    [17] SmaniT,ShapovalovG,SkrymaR,et al.Functional and physiopathological implications of TRP channels[J].Biochim Biophys Acta,2015,1853(8):1772-1782.DOI: 10.1016/j.bbamcr.2015.04.016.
    [18] MoscaRC, OngAA, AlbashaO, et al. Photobiomodulation therapy for wound care: a potent, noninvasive, photoceutical approach[J]. Adv Skin Wound Care, 2019,32(4):157-167. DOI: 10.1097/01.ASW.0000553600.97572.d2.
    [19] de Brito SousaK, RodriguesMFSD, de Souza SantosD, et al. Differential expression of inflammatory and anti-inflammatory mediators by M1 and M2 macrophages after photobiomodulation with red or infrared lasers[J]. Lasers Med Sci, 2020,35(2):337-343. DOI: 10.1007/s10103-019-02817-1.
    [20] FushimiT,InuiS,NakajimaT,et al.Green light emitting diodes accelerate wound healing: characterization of the effect and its molecular basis in vitro and in vivo[J].Wound Repair Regen,2012,20(2):226-235.DOI: 10.1111/j.1524-475X.2012.00771.x.
    [21] MokoenaD,Dhilip KumarSS,HoureldNN,et al.Role of photobiomodulation on the activation of the Smad pathway via TGF-β in wound healing[J].J Photochem Photobiol B,2018,189:138-144.DOI: 10.1016/j.jphotobiol.2018.10.011.
    [22] FrangežI,Nizič-KosT,FrangežHB.Phototherapy with LED shows promising results in healing chronic wounds in diabetes mellitus patients: a prospective randomized double-blind study[J].Photomed Laser Surg,2018,36(7):377-382.DOI: 10.1089/pho.2017.4382.
    [23] VestergaardM,FreesD,IngmerH.Antibiotic resistance and the MRSA problem[J].Microbiol Spectr,2019,7(2).DOI: 10.1128/microbiolspec.GPP3-0057-2018.
    [24] HaridasD,AtreyaCD.The microbicidal potential of visible blue light in clinical medicine and public health[J].Front Med (Lausanne),2022,9:905606.DOI: 10.3389/fmed.2022.905606.
    [25] HadiJ, WuS, BrightwellG. Antimicrobial blue light versus pathogenic bacteria: mechanism, application in the food industry, hurdle technologies and potential resistance[J]. Foods, 2020,9(12):1895. DOI: 10.3390/foods9121895.
    [26] YangP,WangN,WangC,et al.460nm visible light irradiation eradicates MRSA via inducing prophage activation[J].J Photochem Photobiol B,2017,166:311-322.DOI: 10.1016/j.jphotobiol.2016.12.001.
    [27] WangX,QiuL,WangC,et al.Nanodot-doped peptide hydrogels for antibacterial phototherapy and wound healing[J].Biomater Sci,2022,10(3):654-664.DOI: 10.1039/d1bm01533h.
    [28] YuanZ,LinC,DaiL,et al.Near-infrared light-activatable dual-action nanoparticle combats the established biofilms of methicillin-resistant Staphylococcus aureus and its accompanying inflammation[J].Small,2021,17(13):e2007522.DOI: 10.1002/smll.202007522.
    [29] BarbieriJS.A new class of topical acne treatment addressing the hormonal pathogenesis of acne[J].JAMA Dermatol,2020,156(6):619-620.DOI: 10.1001/jamadermatol.2020.0464.
    [30] ZdradaJ,Stolecka-WarzechaA,OdrzywołekW,et al.The use of light in the treatment of acne vulgaris-a review[J].J Cosmet Dermatol,2021,20(12):3788-3792.DOI: 10.1111/jocd.14506.
    [31] JusufS,DongPT.Chromophore-targeting precision antimicrobial phototherapy[J].Cells,2023,12(22):2664.DOI: 10.3390/cells12222664.
    [32] 《窄谱强脉冲光临床应用专家共识(2024版)》编写组. 窄谱强脉冲光临床应用专家共识(2024版)[J]. 中华烧伤与创面修复杂志, 2024, 40(1): 19-25. DOI: 10.3760/cma.j.cn501225-20230918-00085.
    [33] WheelandRG,KoreckA.Safety and effectiveness of a new blue light device for the self-treatment of mild-to-moderate acne[J].J Clin Aesthet Dermatol,2012,5(5):25-31.
    [34] Aziz-JalaliMH,TabaieSM,DjavidGE.Comparison of red and infrared low-level laser therapy in the treatment of acne vulgaris[J].Indian J Dermatol,2012,57(2):128-130.DOI: 10.4103/0019-5154.94283.
    [35] PapageorgiouP,KatsambasA,ChuA.Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris[J].Br J Dermatol,2000,142(5):973-978.DOI: 10.1046/j.1365-2133.2000.03481.x.
    [36] LiMK,LiuC,HsuJTS.The use of lasers and light devices in acne management: an update[J].Am J Clin Dermatol,2021,22(6):785-800.DOI: 10.1007/s40257-021-00624-5.
    [37] WangP,WangB,ZhangL,et al.Clinical practice guidelines for 5-aminolevulinic acid photodynamic therapy for acne vulgaris in China[J].Photodiagnosis Photodyn Ther,2023,41:103261.DOI: 10.1016/j.pdpdt.2022.103261.
    [38] JungJY,HongJS,AhnCH,et al.Prospective randomized controlled clinical and histopathological study of acne vulgaris treated with dual mode of quasi-long pulse and Q-switched 1064-nm Nd:YAG laser assisted with a topically applied carbon suspension[J].J Am Acad Dermatol,2012,66(4):626-633.DOI: 10.1016/j.jaad.2011.08.031.
    [39] BarakatMT, MoftahNH, ElKhayyat MA, et al. Significant reduction of inflammation and sebaceous glands size in acne vulgaris lesions after intense pulsed light treatment[J]. Dermatol Ther, 2017,30(1):1-5. DOI: 10.1111/dth.12418.
    [40] MehrabiJN,Bar-IlanE,WasimS,et al.A review of combined treatments for melasma involving energy-based devices and proposed pathogenesis-oriented combinations[J].J Cosmet Dermatol,2022,21(2):461-472.DOI: 10.1111/jocd.14110.
    [41] IranmaneshB,KhaliliM,MohammadiS,et al.The efficacy of energy-based devices combination therapy for melasma[J].Dermatol Ther,2021,34(3):e14927.DOI: 10.1111/dth.14927.
    [42] MicekI,PawlaczykM,KromaA,et al.Treatment of melasma with a low-fluence 1064 nm Q-switched Nd:YAG laser: laser toning in Caucasian women[J].Lasers Surg Med,2022,54(3):366-373.DOI: 10.1002/lsm.23474.
    [43] DoLHD, AziziN, MaibachH. Sensitive skin syndrome: an update[J]. Am J Clin Dermatol, 2020,21(3):401-409. DOI: 10.1007/s40257-019-00499-7.
    [44] ChoiM,KimJE,ChoKH,et al.In vivo and in vitro analysis of low level light therapy: a useful therapeutic approach for sensitive skin[J].Lasers Med Sci,2013,28(6):1573-1579.DOI: 10.1007/s10103-013-1281-x.
    [45] SonbolH,BrenautE,NowakE,et al.Efficacy and tolerability of phototherapy with light-emitting diodes for sensitive skin: a pilot study[J].Front Med (Lausanne),2020,7:35.DOI: 10.3389/fmed.2020.00035.
    [46] SalminenA,KaarnirantaK,KauppinenA.Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin[J].Inflamm Res,2022,71(7/8):817-831.DOI: 10.1007/s00011-022-01598-8.
    [47] WeissRA, McDanielDH, GeronemusRG, et al. Clinical trial of a novel non-thermal LED array for reversal of photoaging: clinical, histologic, and surface profilometric results[J]. Lasers Surg Med, 2005,36(2):85-91. DOI: 10.1002/lsm.20107.
    [48] LeeSY, ParkKH, ChoiJW, et al. A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings[J]. J Photochem Photobiol B, 2007,88(1):51-67. DOI: 10.1016/j.jphotobiol.2007.04.008.
    [49] HoreshEJ,ChéretJ,PausR.Growth hormone and the human hair follicle[J].Int J Mol Sci,2021,22(24):13205. DOI: 10.3390/ijms222413205.
    [50] HamblinMR. Photobiomodulation for the management of alopecia: mechanisms of action, patient selection and perspectives[J]. Clin Cosmet Investig Dermatol, 2019,12:669-678. DOI: 10.2147/CCID.S184979.
    [51] JooHJ,JeongKH,KimJE,et al.Various wavelengths of light-emitting diode light regulate the proliferation of human dermal papilla cells and hair follicles via wnt/β-catenin and the extracellular signal-regulated kinase pathways[J].Ann Dermatol,2017,29(6):747-754.DOI: 10.5021/ad.2017.29.6.747.
    [52] BarikbinB, KhodamrdiZ, KholoosiL, et al. Comparison of the effects of 665 nm low level diode Laser Hat versus and a combination of 665 nm and 808nm low level diode Laser Scanner of hair growth in androgenic alopecia[J/OL]. J Cosmet Laser Ther, 2017(2017-05-17) [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/28513251/.DOI: 10.1080/14764172.2017.1326609. [published online ahead of print].
  • 加载中
图(1)
计量
  • 文章访问数:  2750
  • HTML全文浏览量:  65
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-03

目录

    /

    返回文章
    返回